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We construct two new summary statistics, the scale-dependent peak height function (scale-PKHF) and
the scale-dependent valley depth function (scale-VLYDF) of matter density, and forecast their constraining
power on primordial non-Gaussianity and cosmological parameters based on Quijote and Quijote-PNG

simulations at z ¼ 0. With the Fisher analysis, we demonstrate that these statistics outperform the power
spectrum and bispectrum. Key findings include: (1) the constraint on the scalar spectral index ns obtained
from the scale-VLYDF/scale-PKHF is 1.59=1.10 times tighter than that from the joint analysis of power
spectrum and bispectrum; (2) the combination of the two statistics yields a slight improvement in

constraining fflocalNL ; fequilNL g over the power spectrum-bispectrum combination, and provides a 1.39-fold
improvement in the constraint on forthoNL ; and (3) after incorporating the power spectrum with our new
statistics, parameter constraints surpass those from power spectrum-bispectrum combination by factors up
to 2.93. This work offers an effective scheme for extracting primordial signals from the late Universe,
paving the way for further breakthroughs in precision cosmology.
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Introduction. The study of the early Universe is an essential
topic in modern cosmology, with profound implications for
the origin of the cosmos, the formation of cosmic struc-
tures, and fundamental physics. A critical aspect of this
study is detecting and constraining the non-Gaussianity of
primordial density fluctuations, i.e., primordial non-
Gaussianity (PNG), which is a powerful probe to discrimi-
nate inflationary models, and to investigate the high-energy
physics of the early Universe [see, e.g., [1,2], for review].
The PNG is preserved throughout the evolution of cosmic

matter distribution, leaving observable signatures in both the
cosmic microwave background (CMB) and the large-scale
structure (LSS) of the late Universe. To date, the most
stringent constraints on the amplitudes of PNG, fXNL, come
from measurements of the CMB anisotropies by the Planck
satellite, which are flocalNL ¼ −0.9� 5.1, fequilNL ¼ −26� 47,
and forthoNL ¼ −38� 24 at 68% C.L. [3], corresponding to
local, equilateral, and orthogonal shapes of the primordial
potential bispectrum, respectively [4]. However, the two-
dimensional (2D) nature and Silk damping hamper the
further improvement of CMB’s constraining ability [5].
The ongoing and upcoming LSS surveys hold promise for
offering enhanced sensitivity to PNG [1,6,7], since they can
map a huge three-dimensional volume of our Universe with
high-scale resolution. Yet, this approach faces substantial

complications due to the fact that feeble primordial infor-
mation is obscured by the late-time non-Gaussianity induced
by the nonlinear gravity and other astrophysical processes.
Confronted with the challenge, the scientific community

has persistently strived to develop sophisticated method-
ologies that go beyond the vanilla power spectrum and
bispectrum of 3D density field, including but not limited to
marked power spectrum [8,9], power spectra in cosmic web
environments [10,11], one-point probability distribution
function [PDF; [12,13]], neural network [14,15], persistent
homology [16–18], and field-level inference [19,20].
Which method optimizes the extraction of cosmological
information from LSS remains an open question.
Motivated by the above, we explore another potential

avenue in this article, focusing on the following crucial
features of the late-time matter distribution: First, the
density field’s PDF is nearly log-normal [21,22]. Hence
the logarithmic transform of the density field makes it more
Gaussian-like and less nonlinear [23–25]. Second, the
density field is manifested in a hierarchical weblike
structure [26–28], which is most suitable to be analyzed
with multiscale tools, such as continuous wavelet transform
[CWT; [29–31]]. Third, the local extrema (halos/peaks and
voids/valleys) of the density field have been shown to be
particularly sensitive to the PNG [32,33]. Considering
them all together, we first perform the wavelet transform
of the log-density field, then identify local extrema
on multiple scales and count them, thereby defining the
scale-dependent peak height function (scale-PKHF) and
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scale-dependent valley depth function (scale-VLYDF).
Here, we will demonstrate the outperformance of this pair
of summary statistics in constraining PNG and standard
cosmological parameters.

Multiscale extrema of the log density. With the aim of
effectively mitigating the effects of late-time non-
Gaussianity, we apply the logarithmic transform to the
density field, which is given by

ρlnðxÞ ¼ ln ½1þ δðxÞ�; ð1Þ

where the density field is constructed by assigning the
particle positions to a regular grid with Ng ¼ 5123 cells
using the piecewise cubic spline window function [34].
Then convolved with a wavelet Ψ, the CWT of the log-
density field ρln can be obtained as below:

ρ̃lnðw;xÞ ¼
Z

ρlnðx0ÞΨðw;x − x0Þd3x0; ð2Þ

in which Ψðw;xÞ ¼ w3=2ΨðwxÞ is the rescaled wavelet of
scale w. In the frame of CWT, there are numerous wavelet
options [31]. We use the isotropic Gaussian-derived wave-
let [GDW; [35,36]], a Mexican-hat-shaped wavelet, as the
mother wavelet, given its suitability for detecting peaks and
valleys across multiple scales [37]. Its explicit form is
presented below:

ΨðxÞ ¼ CNð6 − jxj2Þe−jxj2=4; ð3Þ

where CN ¼ ð15ð2πÞ3=2Þ−1=2 is the normalization constant.
For such isotropic wavelets, the log-density field can be
reconstructed as follows [38]:

ρlnðxÞ ¼ hρlniV þ 1

KΨ

Z þ∞

0

w
1
2ρ̃lnðw;xÞdw; ð4Þ

where hρlniV is the mean log density over the whole space,
and KΨ ¼ Rþ∞

0 ½Ψ̂ðkÞ=k�dk with Ψ̂ðkÞ being the Fourier
transform of ΨðxÞ. It can be seen from Eqs. (2) and (4) that
the CWT provides a complete multiscale picture of the
matter distribution.
Next, we find the peaks/valleys of the CWT field

ρ̃lnðw;xÞ at a given scale w by locating cells with values
above/below their neighbors. By counting those extrema,
we can define the scale-PKHF npkðw; νÞ/scale-VLYDF
nvlyðw; νÞ as the number density of CWT peaks/valleys
with heights/depths falling in the bin ½ν − dν=2; νþ dν=2Þ
per unit volume at scale w, which can be mathematically
expressed as

npkðw; νÞ ¼
dN pkðwÞ

dν
ð5Þ

and

nvlyðw; νÞ ¼
dN vlyðwÞ

dν
; ð6Þ

where N pkðwÞ and N vlyðwÞ are the overall number
densities of peaks and valleys at scale w, respectively.
For comparing the scale-PKHF and scale-VLYDF with the
power spectrum, we need to match the wavelet scale wwith
the wave number k by the correspondence w ¼ cwk [see
Appendix A of [40]], where cw ¼ 2=

ffiffiffi
7

p
for the isotropic

GDW. Then our measurements will be restricted to (i) eight
linearly spaced scales in the nonlinear regime of
0.1 ≤ w=cw ≤ 0.5h Mpc−1, (ii) ten linear peak-height bins
corresponding to 0 < ν ≤ 4.5 ρ̃ln;rms, and (iii) 12 linear
valley-depth bins corresponding to −5.4 ρ̃ln;rms ≤ ν < 0,
where ρ̃ln;rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjρ̃lnðw;xÞj2iV

p
denotes the mean square

root at the scale w. With this configuration, the space is
ensured to have at least one peak/valley on the largest scale
and in the highest peak/deepest valley bin. Henceforth for
convenience, we will use k to replace w without any
ambiguity. To gain physical intuition, we make a visuali-
zation of our basic idea and measurements in Fig. 1.

Simulations. The present work utilizes mock density fields
at z ¼ 0 derived from the Quijote [41] and its extension
Quijote-PNG [42], which are publicly available large suites of
N-body simulations with a wide range of cosmological
parameter space. Each simulation tracks the gravitational
evolution of 5123 dark matter particles from z ¼ 127 to
z ¼ 0 in a cubic box of side Lbox ¼ 1h−1 Gpc using the
TreePM code GADGET-III [43]. The initial conditions of Quijote

are Gaussian and generated by the 2LPTIC code [44], while
those of Quijote-PNG are non-Gaussian and generated by the
2LPTPNG code [42,45]. The simulations are organized into
different sets depending on their cosmological parameters.
Among them, the fiducial set contains Nfid ¼ 15; 000
random realizations with parameters of fflocalNL ¼ 0;
fequilNL ¼ 0; forthoNL ¼ 0; Ωm ¼ 0.3175; Ωb ¼ 0.049; σ8 ¼
0.834; ns ¼ 0.9624; h ¼ 0.6711g, which can be used to
compute the covariance matrix of the statistic.
Corresponding to each parameter, there is a simulation
set containing Nderiv ¼ 500 pairs of realizations, in which
this parameter is perturbed by a small step around its
fiducial value leaving the others unchanged. Then in this
way, one can compute the partial derivative of the statistic
concerning the parameter. For the parameters we consid-
ered here, the step sizes are fdflocalNL ¼ �100;dfequilNL ¼
�100;dforthoNL ¼�100;dΩm¼�0.010;dΩb¼�0.002;dσ8¼
�0.015;dns¼�0.020;dh¼ � 0.020g.

Fisher information analysis. The Fisher information matrix
is a commonly used tool to assess the cosmological
constraining power of a summary statistic [46–48], which
is defined as
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F ij ¼
�
∂hSideriv

∂θi

�
C−1

�
∂hSideriv
∂θj

�
T
; ð7Þ

where h·ideriv denotes the ensemble average over Nderiv
paired simulations for each parameter. The statistic vector S
is composed of the scale-PKHF, scale-VLYHF, and power
spectrum, with elements ordered first by the scale k and
then by ν at each scale. θi is the ith parameter of
θ ¼ fflocalNL ; fequilNL ; forthoNL ; h; ns;Ωm;Ωb; σ8g, and C is the
covariance matrix of statistic defined as

C ¼ 1

Nfid − 1

XNfid

n¼1

ðSn − hSifidÞTðSn − hSifidÞ; ð8Þ

in which the statistic Sn is measured from the nth
simulation, and h·ifid denotes the ensemble average over
Nfid fiducial simulations. To get an unbiased estimate, we
multiply the inverse of the covariance matrix by the Hartlap
factor of ðNfid − NS − 2Þ=ðNfid − 1Þ [49], where NS is the
size of S.
The inverse of the Fisher matrix F−1 provides lower

bounds on the parameter error covariance, with its diagonal
elements estimating the1-σmarginalized error onparameters

σ2ðθiÞ ≥ ðF−1Þii: ð9Þ

Results.A theoretical understandingof the covariancematrix
of summary statistics is particularly important for parameter
forecasting from surveys. For this, we show in Fig. 2 the
normalized covariance (i.e., correlation) matrix rij ≡
Cij=

ffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
of the scale-VLYDF, scale-PKHF, and power

spectrum [50], computed numerically using Eq. (8). As
expected, the covariances of the scale-PKHF and scale-
VLYDF are more diagonalized than those of the power
spectrum, enabling more cosmological information to be
retrieved. It can also be seen that there is a minimal
correlation between those statistics, indicating that the
information they provide is complementary.
Given the covariance matrix, we can also determine the

cumulative signal-to-noise ratio, which is another useful
proxy for the information content of the summary statistic.
Its estimations are displayed in Fig. 3 for the studied
statistics as a function of the maximum wave number kmax.

FIG. 1. The illustration of measurements of the scale-PKHF [Eq. (5)]and scale-VLYDF [Eq. (6)]. The left panels represent the CWT
operation [Eq. (2)], in which the 2D log-density slice of 500 × 500 × 20 ðh−1 MpcÞ3 is drawn from a fiducial simulation of Quijote at
z ¼ 0, and the 2D wavelet plot (with red for positive values and blue for negative values) is the cross section of the isotropic GDW
[Eq. (3)] in X-Y plane. Here, the CWT operations are implemented on scales of fkijki ≡ wi=cw ¼ ð0.1þ iΔkÞh Mpc−1 with 0 ≤ i ≤ 7
andΔk ¼ 2=35g. Then we detect the local extrema of the CWTat each scale. For compactness, the middle panels show only the extrema
of CWT fields on four selected scales, where gray regions indicate positive values of the CWT, blank regions indicate negative values,
with red dots marking peaks and blue dots valleys. By counting the extrema, the measured scale-VLYDF nvlyðk; νÞ and scale-PKHF
npkðk; νÞ are shown in the right panels.

FIG. 2. The correlation matrix of the scale-VLYDF, scale-
PKHF, and power spectrum. Note that for the two formers, gray
lines partition the matrix into cells organized by scale.
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We see that the power spectrum SNR flattens out beyond
k ≈ 0.3h Mpc−1, which has also been reported in previous
studies, and that the bispectrum follows the same feature
with a lower SNR [10,42,51,52]. In contrast, both the scale-
PKHF and scale-VLYDF do not experience such flattening
and achieve a high SNR level. The combination of them
both gives a much better SNR, up to 8.98 times higher
than the power spectrum at kmax ¼ 0.5h Mpc−1, and even
9.73 times when the power spectrum is included. We note
that the combination of power spectra in cosmic web
environments in [10] can achieve an eight times higher
SNR than the ordinary power spectrum.
In Fig. 4, we present the Fisher forecast for 1-σ

confidence contours of PNG and cosmological parameters
at the maximum wave number kmax ¼ 0.5h Mpc−1.
Considering that the power spectrum carries negligible
information on PNG, we also include the constraints from
the bispectrum and its combination with the power spec-
trum for comparison [15,42]. For further clarity, we also list
explicitly the improvement factors over the power spectrum
in Table I for all statistics. We see that the use of either
scale-VLYDF or scale-PKHF alone can boost constraints
significantly on the three types of PNG and break key
degeneracies between parameters, including those between
different PNG types, those between PNG amplitudes and
cosmological parameters, and those between different
cosmological parameters, e.g., ns − σ8, h − σ8, Ωb − σ8,
and ns − h. It is noteworthy that the scalar spectral index ns
is constrained much more tightly by the scale-VLYDF and
scale-PKHF, outperforming the power spectrum by factors
of 12.37 and 8.61, the bispectrum by factors of 3.90 and
2.72, and the power spectrum-bispectrum combination by

1.59 and 1.10, respectively. However, they provide weaker
constraints on Ωm than that from the power spectrum.
After jointly combining the scale-PKHF and scale-

VLYDF, all the parameter constraints becomemore stringent
than those from the power spectrum. For the primordial
parameter subset fflocalNL ; fequilNL ; forthoNL ; nsg embedding the
primordial information, constraints are improved approxi-
mately by factors of f2.11; 1.22; 2.40; 4.92g over the bis-
pectrum, and by f1.05; 1.03; 1.39; 2.00g relative to the
bispectrum and power spectrum combination. When the
power spectrum is included in our combination, all con-
straints are further improved, reaching f1.72; 2.18; 1.50;
1.33; 2.93; 1.16; 1.05; 1.62g times the joint constraints from
the power spectrum-bispectrum combination for parameters
fflocalNL ; fequilNL ; forthoNL ; h; ns;Ωm;Ωb; σ8g. This demonstrates
that tighter parameter constraints can be achieved by com-
bining the power spectrumwith the scale-VLYDF and scale-
PKHF, bypassing the reliance on higher-order spectra (or
correlation functions).

Conclusions. In this letter, we propose a pair of new
summary statistics, the scale-PKHF and scale-VLYDF of
3D density field, which are well defined, easy to imple-
ment, and fully leverage the multiscale nature, log-normal
property, and local extrema distribution of the matter
distribution at late times. Based on massive datasets of
Quijote and Quijote-PNG simulations, we apply the two
statistics to forecast the primordial non-Gaussianity and
cosmology with the Fisher matrix formalism.
We find that the covariance matrix of the scale-PKHF

and scale-VLYDF shows less scale coupling than that of the
ordinary power spectrum. Combining the scale-PKHF and
scale-VLYDF with the power spectrum can achieve a high
SNR of ∼10 times the power spectrum at the maximum
wave number of 0.5h Mpc−1 without showing signs of
flattening. These facts suggest that the two statistics can
extract huge information content from the LSS. Further, we
note that the sole use of scale-VLYDF or scale-PKHF can
already put a tighter constraint on the scalar spectral index
ns than the power spectrum-bispectrum combination.
Jointly considering the scale-PKHF and scale-VLYDF
leads to much stronger constraints on the amplitudes of
PNG fflocalNL ; fequilNL ; forthoNL g than the bispectrum, while offer-
ing a modest improvement over the power spectrum-
bispectrum combination, which highlights that the
scale-PKHF and scale-VLYDF are very sensitive to the
faint primordial signals in the LSS. By incorporating
the power spectrum, scale-PKHF, and scale-VLYDF, all
parameter constraints are tightened compared to those
from the power spectrum-bispectrum combination. The
greatest improvement is observed for ns, followed by
the PNG parameters and σ8, with the least improvement
for the remaining parameters.
Overall, we conclude that our methodology shows

great superiority in constraining PNG and cosmological

FIG. 3. The cumulative signal-to-noise ratio, SNR ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hSifidC−1 × hSiTfid

p
, of the scale-VLYDF, scale-PKHF, power

spectrum, and their combinations, as labeled. The eight maxi-
mum wave numbers are actually the scales at which we perform
the CWT.
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parameters. Notably, next-generation surveys like
DESI [53] and Euclid [54], which aim to map the
Universe at unprecedented resolution, can benefit signifi-
cantly from these new statistics. By leveraging their ability to

extract complementary information from the LSS, these
surveys can achieve tighter constraints on PNG and other
cosmological parameters. Furthermore, the enhanced sensi-
tivity to the scalar spectral index underscores the potential
of our methods to refine our understanding of inflationary
physics. Nonetheless, it is important to recognize that our
analysis is confined to the dark matter density field, which
cannot be observed directly and is instead traced by galaxies.
Observational effects, such as galaxy bias, redshift-
space distortions, survey geometry, and selection functions,
can degrade the parameter constraints. To adapt our statistics
for real data from LSS surveys and achieve optimal con-
straints, we plan to leverage the SimBIG [55,56] framework to
produce galaxy mock catalogs, incorporating observational
effects to robustly infer the posterior distribution of
parameters.
We release our code for reproducing our results at [57].

FIG. 4. The marginalized 1-σ confidence contours for PNG and standard cosmological parameters obtained from the scale-VLYDF,
scale-PKHF, power spectrum, bispectrum, and some of their combinations, as labeled. In some subplots, the confidence ellipses from the
power spectrum are too large to fit within the plotted range. The results for the bispectrum and its combination with power spectrum are
sourced from [15] and consistent with those presented in [42], which are the measurements with the maximum wave number being cut
off at 0.5h Mpc−1 and without applying the reconstruction algorithm.

TABLE I. The improvement factors of various statistics over
the ordinary power spectrum for PNG amplitudes and cosmo-
logical parameters.

Parameters σP=σB σP=σPþB σP=σnvly σP=σnpk σP=σnvlyþnpk σP=σnvlyþnpkþP

flocalNL 28.59 57.61 32.73 20.22 60.24 99.14

fequilNL
45.10 53.28 28.05 19.50 54.82 115.97

forthoNL 43.52 74.96 29.82 39.32 104.36 112.42
h 2.59 4.94 1.66 1.53 2.36 6.59
ns 3.17 7.80 12.37 8.61 15.61 22.82
Ωm 2.47 5.11 0.78 0.69 1.20 5.92
Ωb 2.37 3.83 1.20 1.09 1.62 4.01
σ8 10.06 29.88 4.24 4.23 8.81 48.46
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