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A B S T R A C T 

The continuous wavelet transform (CWT) is very useful for processing signals with intricate and irregular structures in 

astrophysics and cosmology. It is crucial to propose precise and fast algorithms for the CWT. In this work, we re vie w and 

compare four different fast CWT algorithms for the 1D signals, including the FFTCWT, the V97CWT, the M02CWT, and 

the A19CWT. The FFTCWT algorithm implements the CWT using the F ast F ourier Transform (FFT) with a computational 
complexity of O( N log 2 N ) per scale. The rest algorithms achieve the complexity of O( N ) per scale by simplifying the CWT 

into some smaller convolutions. We illustrate explicitly how to set the parameters as well as the boundary conditions for them. 
To examine the actual performance of these algorithms, we use them to perform the CWT of signals with different wavelets. 
From the aspect of accuracy, we find that the FFTCWT is the most accurate algorithm, though its accurac y de grades a lot when 

processing the non-periodic signal with zero boundaries. The accuracy of O( N ) algorithms is robust to signals with different 
boundaries, and the M02CWT is more accurate than the V97CWT and A19CWT. From the aspect of speed, the O( N ) algorithms 
do not show an o v erall speed superiority o v er the FFTCWT at sampling numbers of N � 10 

6 , which is due to their large leading 

constants. Only the speed of the V97CWT with real wavelets is comparable to that of the FFTCWT. Ho we ver, both the FFTCWT 

and V97CWT are substantially less efficient in processing the non-periodic signal because of zero padding. Finally, we conduct 
wavelet analysis of the 1D density fields, which demonstrate the convenience and power of techniques based on the CWT. We 
publicly release our CWT codes as resources for the community. 
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 I N T RO D U C T I O N  

a velets are wa ve-like functions that are localized in both the
eal and Fourier domains. Hence, by convolving a signal under 
nvestigation with the dilated or contracted wavelets, the local 
eatures at various scales will be extracted, and this process is called
avelet transform (WT; e.g. Daubechies 1992 ; Kaiser & Hudgins 
994 ; Addison 2017 ). There are two basic types of WT: discrete WT
DWT) and continuous WT (CWT). The DWT, using orthogonal 
av elets, operates o v er coarse dyadic scales and positions. In contrast

o the DWT, the CWT offers a highly redundant representation of
he signal, which ensures that intricate structures or textures can 
e resolved quite well (Addison 2018 ). Ho we ver, the redundancy
lso makes the direct computation of the CWT terribly inefficient, 
hich requires a time complexity of O( N 

2 ) per scale, where N is
he number of data points. One more efficient way to implement 
WT is to use the F ast F ourier Transform (FFT) with a complexity
( N log 2 N ), since the convolution in the real domain is equi v alent

o multiplication in the frequency domain, i.e. convolution theorem 
 E-mail: hep@jlu.edu.cn 

2
m  

I  

A  

2023 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. Th
ommons Attribution License ( http://cr eativecommons.or g/licenses/by/4.0/), whic
rovided the original work is properly cited. 
Torrence & Compo 1998 ; P ́erez-Rend ́on & Robles 2004 ; Press et al.
007 ; Arts et al. 2022 ). 
Consequently, the CWT is becoming increasingly popular in many 

reas of science and engineering. In the context of astrophysics and
osmology, the CWT has been used for various studies including 
ut not limited to, identifying structures and substructures from the 
alaxy catalogue (e.g. Slezak et al. 1990 , 1993 ; Escalera & Mazure
992 ; Escalera et al. 1994 ; Flin & Krywult 2006 ; Schwinn et al.
018 ), analysing the fractal properties of the galaxy distribution (e.g.
art ́ınez et al. 1993 ; Rozgache v a et al. 2012 ), analysing galactic

mages (e.g. Frick et al. 2001 , 2016 ; Tabatabaei et al. 2013 ; Robitaille
t al. 2014 ; Arshakian & Ossenkopf 2016 ), detecting baryon acoustic
scillation features (e.g. Tian et al. 2011 ; Arnalte-Mur et al. 2012 ;
abatie et al. 2012 ), investigating the turbulence in the intracluster
edium (e.g. Shi et al. 2018 ; Roh et al. 2019 ) and characterizing the

osmic density fields at low redshifts (e.g. Wang & He 2022 ; Wang
t al. 2022 ). 

Since the COBE detection of the CMB anisotropy in 1992, 
osmology has emerged as a precision, data-driven science (Turner 
022 ). The observational experiments such as the Euclid space 
ission ( Euclid ; Laureijs et al. 2011 ), the Dark Energy Spectroscopic

nstrument (DESI; Levi et al. 2013 ), and the Square Kilometre
rray (SKA; Bacon et al. 2020 ), and state-of-the art cosmological
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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Table 1. The acronyms frequently used in the paper, with their meanings 
explained. 

Acronym Meaning 

CWT Continuous wavelet transform 

ICWT Inverse continuous wavelet transform 

CBSW Cubic B-spline wavelet 
GDW Gaussian-deriv ed wav elet 
CW-GDW Cosine-weighted Gaussian-derived wavelet 
MW Morlet wavelet 
FT Fourier transform 

FFT F ast F ourier transform 

FFTCWT The fast CWT algorithm based on the FFT 

V97CWT The fast CWT algorithm of Vrhel et al. ( 1997 ) 
M02CWT The fast CWT algorithm of Mu ̃ noz et al. ( 2002 ) 
A19CWT The fast CWT algorithm of Arizumi & Aksenova ( 2019 ) 
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imulations such as the IllustrisTNG (Pillepich et al. 2018 ), the
IMBA (Dav ́e et al. 2019 ), and the MillenniumTNG (Hern ́andez-
guayo et al. 2022 ), are producing increasingly growing amounts of
ata, which need to be analysed by high-performance algorithms and
ethods. Therefore, the fast CWT algorithms with O( N ) complexity

re obviously more attractive than the FFT-based implementation of
he CWT (FFTCWT) with O( N log 2 N ) comple xity. F ortunately, a
reat effort has been made to develop fast CWT algorithms without
sing the FFT (e.g. Unser et al. 1994 ; Berkner & Wells 1997 ; Vrhel
t al. 1997 ; Mu ̃ noz et al. 2002 ; Omachi & Omachi 2007 ; Arizumi
 Aksenova 2019 ), which achieve the time complexity of O( N )

er scale. Ho we ver, some O( N ) algorithms are only applicable to
articular cases. For example, the algorithm of Unser et al. ( 1994 ) is
estricted to integer scales, the algorithm of Berkner & Wells ( 1997 )
s only available for wavelets which are deri v ati ves of the Gaussian
unction, and the algorithm of Omachi & Omachi ( 2007 ) is only
pplicable for polynomial wavelets. 

What we need are fast CWT algorithms with no restrictions on
he wavelet, and with arbitrarily fine scale resolution. Therefore,
n this study, we will consider the O( N ) algorithms proposed by
rhel et al. ( 1997 ), by Mu ̃ noz et al. ( 2002 ), and by Arizumi &
kseno va ( 2019 ). F or conv enience, we denote these three algorithms

s the V97CWT, the M02CWT, and the A19CWT, respectively.
he V97CWT is a fast recursive algorithm based on the finite

mpulse response (FIR) and infinite impulse response (IIR) filtering
echniques with filter coefficients determined by two compactly
upported auxiliary functions. The M02CWT reaches the linear
omplexity by decomposing both the wavelet and the signal into
-splines, and the A19CWT approximates the wavelet as piecewise
olynomials and reduces the number of operations using integration
y parts. 
Moti v ated by the facts that (1) all these powerful algorithms are

D, and (2) there is no any publicly available source code for the
97CWT , M02CWT , and A19CWT algorithms, we must conduct
 systematic comparison study of them to benchmark their actual
erformance, which is the basis for developing high-dimensional fast
WT algorithms to analyse high-dimensional data, e.g. the 2D weak-

ensing maps and 3D spatial distribution of matter. For some simple
D functions, such as sine, cosine, and Gaussian functions, their
WTs can be e v aluated by analytical calculations. So the accuracy of

heir numerical CWTs can be verified by the corresponding analytical
esults. Finally, it should be noted that the CWT for 1D signals is not
rivial in astrophysics and cosmology, as it is also applicable to a wide
ange of scenarios, such as analysing the light curves of astronomical
ources (e.g. Tarnopolski et al. 2020 ; Ren et al. 2023 ), subtracting
he foreground emission from the 21 cm signal (e.g. Gu et al. 2013 ;
i et al. 2019 ), measuring the small-scale structure in the Lyman- α

orest (e.g. Lidz et al. 2010 ; Garzilli et al. 2012 ; Wolfson et al. 2021 ),
nvestigating the time-frequency properties of the gravitational waves
e.g. Tary et al. 2018 ), characterizing the 1D density fields (e.g. da
unha et al. 2018 ; Wang & He 2021 ; Wang et al. 2022 ), and so on. We
ublicly release the Fortran 95 implementations 1 and their Python
RAPPERS 2 of the fast CWT algorithms described in this paper, in the

ope that the community will use them to perform wavelet analysis
f 1D signals. 
ASTAI 2, 307–323 (2023) 

 The Fortran 95 codes are available at https://github.com/WangYun1995/F 
r tr anCWT 

 The Python WRAPPERS are available at https://github.com/WangYun1995/p 
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The paper is organized as follows. We briefly introduce the
athematical formalism of the CWT in Section 2 . We re vie w the

ast CWT algorithms in Section 3 , and compare the performance
etween them in Section 4 . We present simple applications of the 1D
WT in cosmology in Section 5 . Finally, in Section 6 , we summarize
ur main findings and present the conclusions. 
F or conv enience of the readers, in Table 1 , we list the acronyms

requently used in our paper, with their meanings explained. 

 T H E  FORMALI SM  O F  T H E  C O N T I N U O U S  

AVELET  T R A N S F O R M  

he CWT W f ( w , x ) of a 1D real signal f ( x ) is defined as the
onvolution of f ( x ) with a scaled wavelet, i.e. 

 f ( w, x) = 

∫ +∞ 

−∞ 

f ( u ) ψ( w, x − u )d u, (1) 

here w is the scale parameter with dimension of [ x ] −1 , and 

( w, x) = 

√ 

w ψ( wx) (2) 

s the scaled version of the mother wavelet 

( x) = ψ(1 , x) . (3) 

here are many different choices for the mother wavelet. In this
tudy, we consider four kinds of wavelets: the cubic B-spline wavelet
CBSW; Mu ̃ noz et al. 2002 ), the Gaussian-deriv ed wav elet (GDW;

ang & He 2021 ), the cosine-weighted Gaussian-derived wavelet
CW-GDW; Wang & He 2022 ), and the Morlet wavelet (MW;
ddison 2017 ). Table 2 shows their formulas and properties, and
ig. 1 gives a graphical representation. 
As well known, the classical inverse CWT (ICWT) formula is

 double integral over scale and space (see e.g. Addison 2017 ). In
act, there are simpler inverse ways. If the complex wavelet satisfies
ˆ 
 ( k) = 0 for k < 0 and 0 < | K ψ | < ∞ , where K ψ = 

∫ +∞ 

0 
ˆ ψ ( k) 
k 

d k,
hen the original signal can be reconstructed by the known Morlet
ormula (see e.g. Shensa 1993 ; Daubechies et al. 2011 ) as follows 

 ( x) = f̄ + 2 Re 

{
1 

K ψ 

∫ +∞ 

0 

W f ( w, x) √ 

w 

d w 

}
, (4) 

here Re { . . . } denotes the real part, and f̄ = lim 

L →∞ 

1 
L 

∫ L/ 2 
−L/ 2 f ( x)d x 

s the average value of f ( x ) o v er all space. If the real wavelet satisfies
 ( x ) = ψ ( − x ) and 0 < | K ψ | < ∞ , then a single integral ICWT

https://github.com/WangYun1995/FortranCWT
https://github.com/WangYun1995/pyFortranCWT
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Table 2. Four mother wavelet functions and their properties. ˆ ψ ( k) is the FT of ψ( x ), C N is the normalization constant that makes 
∫ +∞ 

−∞ 

| ψ( x) | 2 d x = 1, 

K ψ = 

∫ +∞ 

0 
ˆ ψ ( k) 
k 

d k is a constant that ensures the existence of the single integral ICWT formula, χ is the half width of the wavelet’s support [ − χ , χ ], and c w = 

w / k pseu is the ratio between the wavelet scale and the corresponding pseudo Fourier frequency (see Wang et al. ( 2022 ) for the definition of c w ). Note the GDW, 
CW-GDW, and MW are not compactly supported, but decay e xponentially. F or these three wavelets, we set the values of χ to confirm 

∫ +∞ 

−∞ 

| ψ( x) | 2 d x ≈ 1 and 

ψ( x ) ≈ 10 −14 . 

ψ( x ) ˆ ψ ( k) C N K ψ χ c w 

CBSW C N (2 β3 ( x ) − β3 ( x + 1) − β3 ( x − 1)) a 64 C N sin 6 ( k /2)/ k 4 
√ 

30 / 31 1 
2 

√ 

15 
62 (27 ln 3 − 32 ln 2) 3 0.46609 b 

GDW C N (2 − x 2 ) e −
x 2 
4 8 

√ 

πC N k 
2 e −k 2 1/(18 π ) 1/4 2(8 π /9) 1/4 12 2 / 

√ 

5 

CW-GDW C N 
(
(1 − x 2 ) cos x − x sin x 

)
e 

1 −x 2 
2 

√ 

2 πC N k( k cosh k −
sinh k) e −

k 2 
2 

√ 

8 
1 + 5 e /π

1 / 4 4 π1 / 4 / 
√ 

1 + 5 e 8 0.42822 c 

MW C N ( e −4i x − e −8 ) e −
x 2 
2 

√ 

2 πC N e 
−8 ( e 4 k − 1) e −

k 2 
2 e 8 √ 

1 −2 e 4 + e 16 
/π1 / 4 1.27484 d 7.5 0.24264 e 

a see Appendix B for the definition of B-splines. 
b 0.466094761079290. 
c 0.428218886729052. 
d 1.274837568937901. 
e 0.242640671273266. 

Figure 1. Top row: the CBSW, GD W, CW-GD W, and MW in the real domain, at scale w = c w , i.e. k pseu = 1. Bottom row: the respectiv e F ourier transforms of 
the wavelets in the top row. 
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ormula also exists, which is 

 ( x) = f̄ + 

1 

K ψ 

∫ +∞ 

0 

W f ( w, x) √ 

w 

d w. (5) 

ote that equation ( 5 ) is the generalization of the inverse formula
n Wang & He ( 2021 ) and Wang et al. ( 2022 ), which holds for
av elets deriv ed from the smoothing window function. We refer to
ppendix A for the deri v ation of equation ( 5 ). 
 FA ST  A L G O R I T H M S  F O R  T H E  1 D  C W T  

or a discrete signal f ( n ) ≡ f ( n � x ) with sampling interval � x , the
WT will be discretized in the following form: 

 f ( ̃  w , n ) = 

√ 

˜ w �x 
∑ 

m 

f ( m ) ψ[ ̃  w ( n − m )] , (6) 

here ˜ w = w�x is the dimensionless scale parameter. It is clear
hat the computation of equation ( 6 ) requires N 

2 multiplications
nd additions per scale, where N is the number of sampling points.
herefore, the high computational complexity makes this algorithm 

mpractical for use. Next we will re vie w four CWT algorithms
RASTAI 2, 307–323 (2023) 
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Figure 2. Schematic representation of the FFTCWT algorithm. We define 
the loop variable s = iN subs + j to merge the two nested loops (for i and j ) 
into one single loop. 
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ith better performance, namely the FFTCWT, the V97CWT (Vrhel
t al. 1997 ), the M02CWT (Mu ̃ noz et al. 2002 ), and the A19CWT
Arizumi & Aksenova 2019 ). 

.1 FFTCWT 

f the discrete signal f ( n ) is periodic with period L = N � x , then it
an be decomposed into a Fourier series as follows 

 ( n ) = 

1 

L 

∑ 

m 

ˆ f ( m ) e −2 π i mn/N , (7) 

here the Fourier transform (FT) ˆ f ( m ) is defined as 

ˆ 
 ( m ) = 

L 

N 

∑ 

n 

f ( n ) e 2 π i mn/N . (8) 

By substituting equation ( 7 ) into equation ( 6 ), we get 

 f ( ̃  w , n ) = 

1 

L 

∑ 

m 

ˆ W f ( ̃  w , m ) e −2 π i mn/N , (9) 

here ˆ W f ( ̃  w , m ) = 

√ 

L 
N ̃  w 

ˆ f ( m ) ̂  ψ ( 2 πm 

N ̃  w 
), and ˆ ψ ( k) is the FT of the

avelet ψ( x ). Clearly, as the inverse FT of the product ˆ W f ( ̃  w , m ),
he CWT W f ( ̃  w , n ) can be computed efficiently by a standard FFT
outine, like the FFTW 3 we used (Frigo & Johnson 2005 ). 

Note that it is necessary to choose a set of discrete scales to use
n equation ( 9 ). For the CWT, the choice of scales is arbitrary. It is
onvenient to discretize the scales evenly on a logarithmic scale: 

˜  = ˜ w min 2 
i+ j/N subs , (10) 

here ˜ w min = c w π/N is the largest scale. Here, the scales are first
i vided into N levs le vels, numbered by i ; then each le vel is di vided
nto N subs sub-levels, numbered by j . Thus, there is a total of N scales 

 N levs N subs scales. The number of scale levels is determined by
 levs = Nint ( log 2 

c w k Nyq 

˜ w min /�x 
), where k Nyq is the Nyquist frequency and

int(. . . ) denotes the nearest integer, while the number of sub-levels
s determined by the user to allow adjustment of the scale resolution.

For clarity, the sequence of the FFTCWT algorithm is shown as a
owchart in Fig. 2 . 

.2 V97CWT 

he fundamental idea of the V97CWT algorithm is to approximate
he wavelet using two scaling functions, e.g. the zero order B-spline

0 ( x ) and the cubic B-spline function β3 ( x ) (see Appendix B for
he definitions and properties of the B-splines). By using β3 ( x ), the
avelet can be approximated as 

 j ( ̃  x ) = ψ 

(
˜ w max ̃  x 

2 j/N subs 

)
≈ ( p j ∗ β3 )( ̃  x ) 

= 

∑ 

n 

p j ( n ) β
3 ( ̃  x − n ) , (11) 

here ˜ x = x/�x is the dimensionless coordinate, and ˜ w max is the
mallest scale. By convolving the abo v e equation with β0 ( x ), we get 

 j ( n ) = ( q j ∗ q 12 )( n ) , (12) 
ASTAI 2, 307–323 (2023) 
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here the FIR filter q j ( n ) is 

 j ( n ) = ( ψ j ∗ β0 )( n ) 

= 

∫ n + 1 / 2 

n −1 / 2 
ψ j ( ̃  x )d ̃  x , n = −N q , . . . , −1 , 0 , 1 , . . . , N q , (13) 

nd the IIR filter q 12 ( n ) = ( β4 ) −1 ( n ) is the convolution inverse of
4 ( n ), i.e. 

 q 12 ∗ β4 )( n ) = δK ( n ) , (14) 

here δK ( n ) is the Kronecker delta function. 
Substituting equations ( 11 ) and ( 12 ) into equation ( 6 ), we have the

ollowing equations 

 0 ( n ) = ( f ∗ β3 )( n ) , (15) 

 0 ( n ) = ( f 0 ∗ q 12 )( n ) , (16) 

 f 

(
˜ w max 

2 j/N subs 
, n 

)
= 

√ 

˜ w max �x 

2 j/N subs 
( F 0 ∗ q j )( n ) . (17) 

xploiting the two-scale relation of the B-splines, we can obtain the
WT at scales of ˜ w max / 2 i+ j/N subs as follows 

 i ( n ) = ( f i−1 ∗ [ h ] ↑ 2 i−1 )( n ) , (18) 

 i ( n ) = ( f i ∗ [ q 12 ] ↑ 2 i )( n ) , (19) 

 f 

(
˜ w max 

2 i+ j/N subs 
, n 

)
= 

√ 

˜ w max �x 

2 i+ j/N subs 
( F i ∗ [ q j ] ↑ 2 i )( n ) , (20) 

here ‘[ . . . ] ↑ 2 i ’ denotes the insertion of 2 i − 1 zeros between
ach point, and h ( n ) is given by equation ( B5 ). Equations ( 15 ),
 17 ), ( 18 ), and ( 20 ) perform the FIR filtering. Equations ( 16 ) and
 19 ) perform the IIR filtering, please refer to Appendix C for

https://www.fftw.org/
art/rzad020_f2.eps
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Figure 3. Schematic representation of the V97CWT algorithm. 
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ts details. The maximum scale level N levs − 1 is determined by 
 levs = Nint ( log 2 

˜ w max 
c w π/N 

). 
The sequence of the V97CWT algorithm is shown as a flowchart 

n Fig. 3 . 

.3 M02CWT 

he M02CWT algorithm represents both the wavelet and the input 
ignal as B-splines. The wavelet function is expressed as 

( ̃  w ̃  x ) ≈
N d ∑ 

n =−N d 

d( n ) β3 

(
˜ w ̃  x 

h 

− n 

)
, (21) 

here the parameter h is used to regulate the accuracy of the B-spline
pproximation. If the support of the wavelet ψ( x ) is [ −χ , χ ], then the
elation between h and N d is h = χ /( N d + 2). Likewise, the continuous
ignal f c ( ̃  x ) is represented by its cubic B-spline interpolant: 

 c ( ̃  x ) = ( c ∗ β3 )( ̃  x ) 

= 

∑ 

n 

c( n ) β3 ( ̃  x − n ) . (22) 

or spline wavelets, e.g. the CBSW, the coefficient sequence d ( n )
an be easily obtained from its analytic form. For general wavelet 
unctions, the sequence d ( n ) is calculated in the same method as c ( n ),
hich are calculated by (see Appendix C ) 

( n ) = 

(
f ∗ ( β3 ) −1 

)
( n ) , (23) 

here f ( n ) is the discrete input signal. 
Substituting equations ( 21 ) and ( B6 ) into equation ( 1 ), we get 

 f ( ̃  w , ̃  x ) = 

√ 

˜ w �x 

(
˜ w 

h 

)3 N d + 4 ∑ 

n =−N d 

b( n ) v 

(
˜ x − nh 

˜ w 

)
, 

here b( n ) = 

∑ 4 
n ′ = 0 d( n − n ′ ) a( n ′ ), and v( ̃  x ) = D 

−4 f c ( ̃  x + 2 h/ ̃  w ).
hen by using equations ( 22 ) and ( B11 ), and considering that
e are typically interested in the integer values of ˜ x , the above

quation becomes 

 f ( ̃  w , n ) = 

√ 

˜ w �x 

(
˜ w 

h 

)3 N d + 4 ∑ 

n ′ =−N d 

l 0 + 7 ∑ 

l= l 0 

× b( n ′ ) g( l) β7 

(
n − ( n ′ −2) h 

˜ w 

−l −2 

)
, (24) 

here l 0 is the ceiling integer of n − ( n ′ − 2) h/ ̃  w − 6, and 

( l) = ( � 

−4 ∗ c)( l) . (25) 

otice that the computation of g ( l ) needs to calculate cumula-
ive sum of the sequence c ( l ) four times, which indicates that
n the case of a large amount of data, g ( l ) becomes increas-
ngly inaccurate as l increases due to the limited precision of
oating points. The way to alleviate this issue is to divide

he sequence c ( l ) into many small segments and then compute
 ( l ) locally on each segment. To do this, we set scales as
ollows 

˜  = ˜ w 0 2 
i+ j/N subs , (26) 

here ˜ w 0 = 2 χ/N , and the scale level i takes the range of
 min = Nint ( log 2 

c w π/N 

˜ w 0 
) to I max = Nint ( log 2 

c w π/ 2 
˜ w 0 

). In the case
f i < 1, we do not split c ( l ); whereas in the case of i ≥
, we split c ( l ) into 2 i parts, as shown by the flowchart in 
ig. 4 . 

.4 A19CWT 

ince the mother wavelet is zero outside the support interval [ − χ ,
], the CWT at integer positions can be written as 

 f ( ̃  w , n ) = 

√ 

�x 

˜ w 

∫ χ

−χ

f c ( n − ˜ u / ̃  w ) ψ( ̃  u )d ̃  u . (27) 

y partitioning the support duration [ − χ , χ ] evenly into 2 N χ

ntervals, i.e. 

− χ = χ−N χ < . . . < χ−1 < χ0 < χ1 < . . . < χN χ = χ, 

e approximate ψ( ̃  x ) with cubic piecewise polynomials as shown 
elow 

( ̃  x ) ≈

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ψ −N χ ( ̃  x ) , χ−N χ ≤ ˜ x < χ1 −N χ , 

. . . 
. . . 

ψ n ′ ( ̃  x ) , χn ′ ≤ ˜ x < χn ′ + 1 , 

. . . 
. . . 

ψ N χ −1 ( ̃  x ) , χN χ −1 ≤ ˜ x < χN χ , 

(28) 

here ψ n ′ ( ̃  x ) = 

∑ 3 
i= 0 αn ′ ,i ( ̃  x − χn ′ ) i for χn ′ ≤ ˜ x < χn ′ + 1 . 

Substituting equation ( 28 ) into equation ( 27 ), we have 

 f ( ̃  w , n ) = 

√ 

�x 

˜ w 

N χ −1 ∑ 

n ′ =−N χ

∫ χn ′ + 1 

χn ′ 
f c 

(
n − ˜ u 

˜ w 

)
ψ n ′ ( ̃  u )d ̃  u . (29) 
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Figure 4. Schematic representation of the M02CWT algorithm. 

f  

i  

o
 

i  

r  

t  

s
o

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/advance-article/doi/10.1093/rasti/rzad020/7197462 by guest on 27 June 2023
hen we apply integration by parts to equation ( 29 ) and arrive at 

 f ( ˜ w , n ) = ˜ w 

3 

√ 

�x 

˜ w 

N χ −1 ∑ 

n ′ =−N χ

6 αn ′ , 3 

∫ χn ′ + 1 

χn ′ 
F 

( 3 ) 
c 

(
n − ˜ u 

˜ w 

)
d ̃  u 

= ˜ w 

4 

√ 

�x 

˜ w 

N χ −1 ∑ 

n ′ =−N χ

6 αn ′ , 3 

(
F 

( 4 ) 
c 

(
n −χn ′ 

˜ w 

)

− F 

( 4 ) 
c 

(
n −χn ′ + 1 

˜ w 

))

= ˜ w 

3 
√ 

˜ w �x 

N χ∑ 

n ′ =−N χ

B 

(
n ′ 
)
F 

( 4 ) 
c 

(
n −χn ′ 

˜ w 

)
, (30) 

here F 

(4) 
c ( ̃  x ) is the fourth antideri v ati ve of f c ( ̃  x ), and 

( −N χ ) = 6 α−N χ , 3 , 

B( n ) = 6( αn, 3 − αn −1 , 3 ) , for 1 − N χ ≤ n ≤ N χ − 1 , 

B( N χ ) = −6 αN χ −1 . (31) 

n fact, equation ( 30 ) assumes that the third deri v ati ve of the
avelet, i.e. ψ 

′′′ 
is constant on the interval [ χn ′ , χn ′ + 1 ), which can be

pproximated as 

 

′′′ ( ̃  x ) ≈ ψ 

′′ ( χn ′ + 1 ) − ψ 

′′ ( χn ′ ) 

χn ′ + 1 − χn ′ 
, (32) 

here ψ 

′′ 
is the second deri v ati v e of the wav elet, which can be

btained analytically. Hence the coefficient αn ′ , 3 is given by 

n ′ , 3 = 

ψ 

′′ ( χn ′ + 1 ) − ψ 

′′ ( χn ′ ) 

6( χn ′ + 1 − χn ′ ) 
. (33) 

By using equations ( 22 ), ( B7 ), and ( B11 ), F 

(4) 
c ( ̃  x ) can be calculated

s 

 

(4) 
c ( ̃  x ) = 

∑ 

l 

g( l) β7 ( ̃  x − l − 2) . (34) 

herefore equation ( 30 ) can be expressed as 

 f ( ̃  w , n ) = ˜ w 

3 
√ 

˜ w �x 

N χ∑ 

n ′ =−N χ

l 1 + 7 ∑ 

l= l 1 

B ( n ′ ) g( l) β7 
(
n −χn ′ 

˜ w 

−l −2 
)

, (35) 

here l 1 is the ceiling integer of n − χn ′ / ̃  w − 6, and the co-
fficient sequence g ( l ) is computed by equation ( 25 ). By com-
aring equations ( 24 ) and ( 35 ), we find that the M02CWT
nd A19CWT are very similar, but the theoretical deri v ation
f the A19CWT is much simpler. To solve the accuracy is-
ue of g ( l ), we adopt the same scheme as the M02CWT 

lgorithm. 
The sequence of the A19CWT algorithm is shown as a flowchart

n Fig. 5 . 

.5 Boundary conditions 

n the definition of the CWT (see equation 1 ), the signal is assumed
o be extended to infinity. Nevertheless, in reality, the length of the
nalysed signal is finite. Hence, we must make assumptions about
he data outside its finite extent. Periodic boundary conditions are
he most common choice. On the one hand, many cosmic fields
re considered to be periodic. On the other hand, periodic boundary
onditions are easy to implement. The FFTCWT inherits the attribute
hat the signal is assumed to be periodic in the FFT. The V97CWT
mposes periodic boundary conditions on the signal by the IIR
ltering (see Appendix C ). For the M02CWT and A19CWT, the
ASTAI 2, 307–323 (2023) 
act that the signal is periodic only imply that the coefficient c ( l )
s periodic. To ensure that g ( l ) is periodic, we take the following
perations: 
In addition, the M02CWT and A19CWT can also eas-

ly handle signals with zero boundaries without padding ze-
os at scale levels of i < 1. After calculating c ( l ) by equa-
ions ( C9 ), ( C10 ), and ( C13 )–( C16 ), the coefficient g ( l ) of the
ignal with zero boundaries can be obtained by the following 
perations: 
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1: if i < 1 then � Scale levels less than 1 
2: g(0 : N − 1) ← c(0 : N − 1) 
3: for j = 1 to 4 do 
4: g ← � 

−1 ∗ g 

5: g ← g − Mean ( g) 
6: end for 
7: else if i ≥ 1 then � Scale levels greater than or equal to 1 
8: Periodically padding N 4 + 6 values at start and N 4 + 3 values at 

end of c 
9: for m = 0 to 2 i − 1 do 

10: l t1 ← 

mN 

2 i 
− N 

2 i+ 1 − 6, l t2 ← 

( m + 1) N 
2 i 

+ 

N 

2 i+ 1 + 2 
11: g( l t1 : l t2 ) ← ( � 

−4 ∗ c)( l t1 : l t2 ) 
12: end for 
13: end if 

1: if i < 1 then � Scale levels less than 1 
2: g( −6 : N + 1) ← c( −6 : N + 1) 
3: for i = 1 to 4 do 
4: g ← � 

−1 ∗ g 

5: C i ← g( N + 1) 
6: end for 
7: for l = l 0 to l 0 + 7 do � Replace l 0 with l 1 in the A19CWT 

8: if l < −6 then 

9: g( l) ← 0 
10: else if l > N + 1 then 

11: l ′ ← l − ( N + 1) 
12: g( l) ← C 4 + C 3 l 

′ + 

1 
2 C 2 l 

′ ( l ′ + 1) + 

1 
6 C 1 l 

′ ( l ′ + 1)( l ′ + 2) 
13: end if 
14: end for 
15: else if i ≥ 1 then � Scale levels greater than or equal to 1 
16: Padding N 

4 zeros at start and N 
4 + 1 zeros at end of c 

17: for m = 0 to 2 i − 1 do 
18: l t1 ← 

mN 

2 i 
− N 

2 i+ 1 − 6, l t2 ← 

( m + 1) N 
2 i 

+ 

N 

2 i+ 1 + 2 
19: g( l t1 : l t2 ) ← ( � 

−4 ∗ c)( l t1 : l t2 ) 
20: end for 
21: end if 
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Figure 5. Schematic representation of the A19CWT algorithm. 
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.6 Parameter settings 

here are some unspecified parameters in the abo v e algorithms, 
hich are ˜ w max , N q , h , N d , and N χ . In this subsection, we will discuss
ow to tune these parameters to make the algorithms sufficiently 
recise and efficient. 
For the V97CWT algorithm, we define the approximation error as 

elow 

E V ( ̃  w max ) = 

∑ 

n 

∣∣ψ( ̃  w max ̃  x n ) −
∑ 

m 

p( m ) β3 ( ̃  x n −m ) 
∣∣∑ 

n | ψ( ̃  w max ̃  x n ) | , (36) 

he result of which is shown in Fig. 6 . We find that the error
E V ( ̃  w max ) increases with increasing ˜ w max . To ensure a high preci- 

ion as well as a sufficiently large scale range, we set ˜ w max = 1 . 34 c w ,
hich satisfy AE V ( ̃  w max / 2) = 0 . 1. According to equation ( 13 ), q j ( N q 

 1) = 0 yields the relationship N q ( j ) = 2 j/N subs χ/ ̃  w max − 1 / 2. For
implicity, we use the same value of N q ( j ) at each j level, i.e. 

 q = 

2 χ

˜ w max 
− 1 

2 
, (37) 

hich is the upper limit of N q ( j ). 
For the M02CWT algorithm, we define the approximation error 

s below 

E M 

( h ) = 

∑ 

n 

∣∣ψ( ̃  x n ) −
∑ 

m 

d( m ) β3 ( ̃  x n /h −m ) 
∣∣∑ 

n | ψ( ̃  x n ) | , (38) 
he result of which is shown in Fig. 7 . Since the cubic spline
ecomposition is perfectly exact to represent the CBSW with h = 1
see Table 2 ), we only consider the approximation error for the GDW,
W-GDW, and MW. We see that the smaller the h , the smaller the
rror. Ho we ver, considering the ef ficiency of the algorithm, the value
f h cannot be chosen too small. Hence, we set the value of h such that
he error AE M 

( h ) equals 5 × 10 −4 , and then N d can be determined
y h = χ /( N d + 2). 
RASTAI 2, 307–323 (2023) 
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Figure 6. The Approximation error defined by equation ( 36 ) for different 
wavelets as labelled. At ˜ w max = 0 . 67 c w , the error reaches 0.1. When ˜ w max = 

1 . 34 c w , i.e. twice as large as 0.67 c w , the error is roughly 0.33. 

Figure 7. The Approximation error defined by equation ( 38 ) for different 
wavelets as labelled. The grey horizontal line shows the error level of 5 ×
10 −4 , and the gre y v ertical lines denote h ’s values where the error reaches 5 
× 10 −4 for the MW, CW-GDW, and GDW from left to right. 
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Figure 8. The Approximation error defined by equation ( 39 ) for different 
wavelets as labelled. For the CBSW, at N χ equal to the integer multiples of 
3, the error is very tiny and nearly 10 −16 . So N χ = 3 is the best choice for 
it. The grey horizontal line shows the error level of 5 × 10 −4 , and the grey 
vertical lines denote N χ ’s values where the error reaches 5 × 10 −4 for the 
GD W, CW-GD W, and MW from left to right. 

Table 3. Parameter settings for the V97CWT, M02CWT, and A19CWT 

algorithms. 

˜ w max N q h N d N χ

CBSW 0.62457 a 9 1 1 3 
GDW 1.19853 b 20 0.526 21 21 
CW-GDW 0.57381 c 27 0.275 27 28 
MW 0.32514 d 46 0.165 43 43 

a 0.6245669798462486. 
b 1.1985324359398872. 
c 0.5738133082169298. 
d 0.3251384995061764. 
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For the A19CWT algorithm, we define the approximation error as
elow 

E A ( N χ ) = 

∑ 

n 

∣∣ψ( ̃  x n ) − ψ pp ( ̃  x n ) 
∣∣∑ 

n | ψ( ̃  x n ) | , (39) 

here ψ pp ( ̃  x n ) is the piecewise polynomial function given by
quation ( 28 ). Because the CBSW is actually a cubic piecewise
olynomial function with compact support width 2 χ = 6 and segment
idth �χ = 1, the approximation error AE A ( N χ ) should be very

mall at the integer multiples of 3, which is illustrated in Fig. 8 .
ence for the CBSW, N χ = 3 is the best choice. For the GDW, CW-
DW, and MW, we set the value of N χ such that the error AE A ( N χ )

oughly equals 5 × 10 −4 , which is in accordance with the parameter
ettings of the M02CWT. 

For clarity and convenience, we list the parameters and their values
n Table 3 . 
ASTAI 2, 307–323 (2023) 
 P E R F O R M A N C E  C O M PA R I S O N  BETWEEN  

L G O R I T H M S  

n the 1D case, it is easy to find functions whose CWTs can be
alculated analytically by using equation ( 1 ). Therefore, we can use
heir analytical results to examine the accuracy of the corresponding
umerical outcomes. For instance, we here use the periodic function
 1 ( x ) with period 2 π and the Gaussian function f 2 ( x ) as test signals,
hich are given below 

 1 ( x) = 2 cos ( x ) + 

1 

2 
cos (8 x ) + 

1 

4 
sin (32 x ) , (40) 

 2 ( x) = e −x 2 / 2 . (41) 

he two signals and their analytical CWTs are shown in Fig. 9 . 
For the following numerical tests, we write the double precision

odes in Fortran 95 language, and compile them by gfortran 6.3.1
ith the -O3 flag under the Intel Xeon CPU E5-2678 v3 @ 2.50 GHz
rocessor with 250 GB RAM running Linux (Fedora release 24). 
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Figure 9. Left-hand column: the periodic signal f 1 and its CWTs which are calculated analytically for different wavelets. Right-hand column: the same as the 
left-hand column but for the non-periodic signal f 2 . For comparison between different wavelets, we replace the wavelet scale w by the pseudo wavenumber k pseu 

(see Table 2 ), and keep this convention throughout the subsequent plots. 
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.1 Accuracy comparison 

o check the accuracy of these algorithms, we define the error
pectrum as follows 

S ( w ) = 

∑ 

n | W 

n 
f ( w , x n ) − W 

a 
f ( w, x n ) | ∑ 

n | W 

a 
f ( w , x n ) | × 100 per cent , (42) 

here W 

a 
f ( w, x) is the analytical CWT, and W 

n 
f ( w, x) is the numer-

cal CWT. 
The computation of the numerical CWT W 

n 
f ( w, x) requires the

ampling of the signal. For the signals f 1 ( x ) and f 2 ( x ), we take N =
12 evenly spaced sample points on the intervals [0, 2 π ) and [ − 6,
), respectively, which is sufficient to a v oid the aliasing effect. The
eriodic boundary condition is used for f 1 ( x ), and the zero boundary
ondition for f 2 ( x ). Since the FFTCWT and V97CWT al w ays assume
he signals are periodic, we should pad zeros at both ends of the
ignal before e x ecute the CWT of f 2 ( x ). Let N zeros denote the number
f padded zeros at each end, then it can be determined by χ and
˜  min : 

 zeros = Nint ( χ/ ̃  w min ) , 

= Nint 

(
χ

c w π

)
N. (43) 

o we ver, padding zeros takes up more computational resources and
educe the efficiency of the algorithm, which we will see in the next
ubsection. 

In Fig. 10 , we show the error spectra of the periodic signal f 1 ( x ).
e see that the FFTCWT algorithm yields the highest accuracy, 

he error of which is less than 10 −10 per cent . The error of the
97CWT algorithm is between 0 . 01 per cent and 1 per cent . The

rrors of these two algorithms do not show any significant depen-
ence on the kinds of wav elets. We observ e that for the CBSW, the
rrors of both M02CWT and A19CWT are approximately between 
 × 10 −9 per cent and 0 . 003 per cent . But for other wavelets, the
rrors are clearly higher than that for the CBSW, which are ranging
rom 0 . 003 per cent to 1 per cent in the case of the M02CWT,
RASTAI 2, 307–323 (2023) 
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Figure 10. The error spectra of the periodic signal f 1 ( x ) for different wavelets, computed by the FFTCWT, V97CWT, M02CWT, and A19CWT algorithms, 
respectively. 
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nd from 0 . 1 per cent to 10 per cent in the case of the A19CWT.
he larger error of the A19CWT may be due to the too coarse
pproximation in equation ( 32 ). If N χ is larger, this approximation
ill be more accurate, but the A19CWT will be less efficient. 
In Fig. 11 , we show the error spectra of the non-periodic sig-

al f 2 ( x ). We observe that the error magnitudes of the FFTCWT
10 −8 per cent − 0 . 1 per cent ) in handling the non-periodic signal
 2 ( x ) are much higher than that (10 −14 per cent − 10 −10 per cent )
n handling the periodic signal f 1 ( x ), whereas the error magni-
udes of the other algorithms do not change much. Even so,
he FFTCWT still provides the best accuracy among all al-
orithms for all wavelets. Only for the CBSW, the accuracy
f the M02CWT and A19CWT can ri v al the accuracy of the
FTCWT. 
In summary, the V97CWT , M02CWT , and A19CWT algorithms,

hich perform CWT calculations in real space, are not as precise as
he FFTCWT. The reason for this is mainly that the former three make
pproximations to the wavelet function to trade off the efficiency, but
et the latter does not. For the general wavelets, A19CWT yields
he largest error, which is due to twice approximations, namely
quations ( 28 ) and ( 32 ), as stated abo v e. Ho we ver, for the special
avelet CBSW, the M02CWT and A19CWT algorithms provide a
ASTAI 2, 307–323 (2023) 

I  
uite high accuracy owing to the fact that equations ( 21 ), ( 28 ), and
 32 ) describe the CBSW exactly. 

.2 Speed comparison 

o check the actual efficiency of the algorithms, we measured the
ariation of their CPU time with the number of sampling points per
cale. 

Fig. 12 shows the measurements of the periodic signal f 1 ( x ). We
ee that the V97CWT, M02CWT, and A19CWT algorithms without
sing the FFT are indeed very fast and they all have the complexity
f O( N ) but with different leading constants. Howev er, the y do not
how a huge speed advantage o v er the FFTCWT at the sampling
umber of N � 10 6 , which can be due to two reasons. On the one
and, the FFT library we used, FFTW , is very well optimized, and
s the fastest free library available for computing the FFT. On the
ther hand, the leading constants of the V97CWT , M02CWT , and
19CWT are too large. The V97CWT performances better than the
02CWT and A19CWT, due to its recursive nature. Its CPU time

re comparable to that of the FFTCWT for the real wavelets. 
Fig. 13 shows the measurements of the non-periodic signal f 2 ( x ).

t is clearly seen that the FFTCWT and V97CWT consume much
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Figure 11. Same as Fig. 10 , but for the results of the non-periodic signal f 2 ( x ). 
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ore computational time than they do in processing the periodic 
ignal, since we pad many zeros to the signal f 2 ( x ) before e x ecuting
he CWT. Only for the comple x wav elet, MW, the FFTCWT still

aintains the speed advantage o v er the other algorithms. For other
avelets, the FFTCWT has no distinct speed advantage. The CPU 

ime consumed by the M02CWT and A19CWT do not differ by 
hether the signal is periodic or non-periodic. 

 APPLICATIONS  IN  C O S M O L O G Y  

here are many 1D signals in the astrophysics and cosmology, such 
s the light curves of astronomical sources, the Lyman- α forest, the 
1 cm signal, the gravitational waves, and the cosmic fields obtained 
y solving 1D perturbative equations. The CWT can map them into 
he 2D time-frequency or space-scale domains, which reveals totally 
he complex and irregular structures at various positions and scales. 
urthermore, we can construct some statistics based on the CWT 

o characterize the signals more quantitatively, for example, the 
avelet power spectrum, the wavelet cross-correlation, the wavelet 
icoherence, the wavelet modulus maxima and so on (e.g. Muzy et al.
991 ; Hudgins et al. 1993 ; van Milligen et al. 1995a , 1995b ). 
As illustration, we perform the wavelet analysis of the density 

elds obtained by the 1D Zel’dovich approximation, which provides 
he exact non-linear solution for the perturbative equations of 
ollisionless matter up to the first appearance of orbit-crossing 
ingularities. The non-linear density field is given by 

( x, θ ) + 1 = 

1 

1 − θδ0 ( x) 
, (44) 

here θ is the growth factor and used as the time variable, and δ0 ( x )
 δ( x , θ = 1) is the initial Gaussian density field satisfying periodic

oundary conditions, which is generated by the power-law spectrum 

 ( k ) = Ak −2 with A = 2.5 × 10 −6 . For more details about the 1D
el’dovich approximation, we refer the reader to Wang et al. ( 2022 ).
From the results in Section 4.1 , it is clear that the FFTCWT

lgorithm is optimal for the periodic signal. In addition, as can be
een from Fig. 1 , the CW-GDW achieves a better balance between
patial resolution and scale resolution compared to other wavelets. 
herefore, we compute the CWTs of density fields by the FFTCWT
lgorithm with the CW-GDW, the results of which are illustrated in
ig. 14 . By visual inspection, the CWT of the initial density field

s dominated by large-scale components with a relatively random 

patial distribution. As a consequence of the non-linear gravitational 
ffect, the CWT of the density field at θ = 100 shows a non-random
tructure with many small-scale components, which do not exist at 
he initial time. 
RASTAI 2, 307–323 (2023) 
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Figure 12. The CPU time per scale of the different algorithms with different wavelets to compute the numerical CWT of the periodic signal f 1 ( x ). 

Figure 13. Same as Fig. 12 , but for the measurements of the non-periodic signal f 2 ( x ). 
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Figure 14. Top row: the initial density field (left-hand panel) and the non-linear density field at θ = 100 (right-hand panel). Bottom row: the corresponding 
CWTs of the density fields, which are computed by using the FFTCWT algorithm with the CW-GDW. In these plots, the coordinates x and scales k pseu are made 
dimensionless by dividing and multiplying the length size L of the density field, respectively. 
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Figure 15. Comparison of the env-WPS of the initial density field and that 
of the late time density field. Top panel: the env-WPS of the initial density 
field with power-law power spectrum P ( k ) ∝ k −2 . Bottom panel: the env-WPS 
of the non-linear density field at θ = 100. In each panel, the global WPS is 
denoted by the black line. 
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In our previous work (Wang & He 2022 ), we proposed the
nvironment-dependent wavelet power spectrum (env-WPS) to mea- 
ure the dependence of matter clustering on both the scale and 
nvironment, which is given by 

 ( w, δ′ ) = 〈| W δ( w, x) | 2 〉 δ( x) = δ′ , (45) 

here W δ( w , x ) is the CWT of δ( x ), and ‘ 〈 . . . 〉 δ( x) = δ′ ’ denotes the
tatistical average of the wavelet coefficients at each scale with the 
ame local density, i.e. δ( x ) = δ

′ 
. If we av erage o v er all the possible

ensities, then the env-WPS will degenerate to the global WPS as
ellow 

 ( w) = 〈| W δ( w, x) | 2 〉 all δ′ . (46) 

hus the relation between the global WPS P ( w ) and the env-WPS
 ( w , δ

′ 
) is 

 ( w) = 

∑ 

δ′ 
f δ′ P ( w, δ′ ) , (47) 

here f δ′ = N δ′ /N is the fraction of the env-WPS relative to the
lobal WPS, and N δ′ is the number of grids at δ( x ) = δ

′ 
. In fact,

he env-WPS can be generalized to other kinds of signals, just by
eplacing δ

′ 
with the corresponding attribute. 

For simplicity, we here split the densities into: (i) δ > 0, i.e.
he o v erdense environments and (ii) δ < 0, i.e. the underdense
nvironments, and then compute the env-WPSs, the results of which 
re shown in Fig. 15 . For the initial density field, we can see that its
nv-WPSs have the same amplitudes with the global WPS. Ho we ver,
or the fully evolved density field at θ = 100, the env-WPSs exhibit
n obvious environment dependence. Specifically, the env-WPS with 
> 0 is larger than the global WPS, while that with δ < 0 is less

han the global WPS. 
As can be seen, the env-WPS provides more information about 
atter clustering than the traditional two-point statistics, e.g. FT- 
RASTAI 2, 307–323 (2023) 
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ased power spectrum, which completely lost the characteristics of
he matter spatial distribution. 4 

 SUMMARY  A N D  C O N C L U S I O N S  

n this paper, we re vie w the fast algorithms for the CWT, including the
FTCWT with complexity of O( N log 2 N ) per scale, and other three
lgorithms with complexity of O( N ) per scale, i.e. the V97CWT
roposed by Vrhel et al. ( 1997 ), the M02CWT proposed by Mu ̃ noz
t al. ( 2002 ), and the A19CWT proposed by Arizumi & Aksenova
 2019 ). 

By the convolution theorem, the FFTCWT converts convolution
alculations in the real domain into multiplications in the Fourier
omain, and then returns the final result by the inverse FT (see
ection 3.1 and Fig. 2 ). The V97CWT use the daughter wavelets
ith scales of ˜ w max / 2 j/N subs and approximate them with two scaling

unctions, i.e. the zero order and the cubic B-splines. Using the
wo-scale relation of the B-splines, then the CWT can be calculated
ecursively (see Section 3.2 and Fig. 3 ). The M02CWT approximate
he daughter wavelet with the rescaled cubic B-spline, and interpo-
ating the discrete input signal with the cubic B-spline. Therefore, the
arge wa velet conv olution kernel is translated into smaller B-spline
ernel (see Section 3.3 and Fig. 4 ). The A19CWT achieves the same
urpose as the M02CWT by approximating the mother wavelet as
ubic piecewise polynomials and applying integration by parts (see
ection 3.4 and Fig. 5 ). In fact, the precision of algorithms originally
entioned in Mu ̃ noz et al. ( 2002 ) and Arizumi & Aksenova ( 2019 )

s terrible on small scales, and we remedy this issue in our M02CWT
nd A19CWT algorithms (see Appendix D ). 

We compare the accuracy and speed between these fast CWT
lgorithms in Figs 10 –13 by using two specific signals. Our main
ndings are summarized as follows: 

(i) Even though for the non-periodic signal with zero boundaries,
he accuracy of the FFTCWT is much lower compared to that for the
eriodic signal, it is still more accurate than other algorithms. 
(ii) When the O( N ) algorithms process the non-periodic signal

ith zero boundaries, the o v erall magnitudes of their errors do not
row larger compared to when they process the periodic signal.
ence the accuracy of them is robust to different types of signals.
he M02CWT achieves the best accuracy among them. 
(iii) For the GDW, CW-GDW and MW, A19CWT is the least

ccurate algorithm. But for the CBSW, the A19CWT is just as
ccurate as the M02CWT, which is because both the cubic B-spline
nd piecewise polynomials represent the CBSW exactly. 

(iv) At the sampling number we consider, i.e. N � 10 6 , the
lgorithms with the complexity of O( N ) per scale do not exhibit
n o v erall speed advantage o v er the FFTCWT. Only the V97CWT
ith real wavelets shows a speed comparable to it. 
(v) For the non-periodic signal with zero boundaries, the

FTCWT and V97CWT are less efficient due to padding zeros to
he signal. Ho we ver, the ef ficiency of the M02CWT and A19CWT
s not affected by the type of signals. 

Therefore, the FFTCWT and V97CWT are suitable for the periodic
ignals. In particular, the V97CWT using real wavelets will perform
etter than using comple x wav elets, e.g. the MW. The M02CWT is
uitable for the non-periodic signals with zero boundary condition.
e do not refer to the A19CWT algorithm because it is not accurate

nough. 
ASTAI 2, 307–323 (2023) 

 Wang & He ( 2022 ) makes it more explicitly. 

D  

D  
As a demonstration of the usage of the CWT, we then apply
he FFTCWT to perform wavelet analysis of the 1D density fields.
cting like a ‘mathematical microscope’, the CWT allows us to

oom in on complex structures of the density fields at various
cales and locations (see Fig. 14 ). We also introduce the wavelet-
ased statistic, env-WPS, which is a bi v ariate function of the
ocal density environment and the scale. As shown in Fig. 15 ,
he env-WPS tells us that for the initial field, there is no any
nvironment dependence of matter clustering on all scales. Ho we ver,
or the late time field, the matter clustering is dominated by the
atter in o v erdense en vironments. Clearly, the en v-WPS contains
ore information about the matter clustering than the usual two-

oint statistics. The env-WPS can also be generalized to analyse
ther signals by replacing the local density environment by other
ttribute. 

To analyse the multidimensional data, such as the 2D grav-
tational lensing maps and the 3D cosmic fields, the next nat-
ral step is to extend the 1D CWT algorithms to multidimen-
ions. It is easy to develop 2D and 3D FFT-based CWT algo-
ithms, since there are publicly available FFT libraries to use.
o we v er, multidimensional e xtensions of the rest 1D algorithms

re not straightforward. In the future, we will plan to develop
he fast multidimensional CWT algorithms without the use of
FT. 
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PPENDI X  A :  D E R I VAT I O N  O F  T H E  SIMPLE  

NVERSI ON  F O R M U L A  F O R  T H E  C W T  

n our previous works (Wang & He 2021 ; Wang et al. 2022 ), we
emonstrate that there exists a single integral inverse formula for the
eal-valued wavelet derived by smoothing window function which is 
ho wn belo w 

 ( x) = f ( w → 0 , x) + 

∫ +∞ 

0 

W f ( w, x) √ 

w 

d w, (A1) 

here f ( w → 0 , x) = lim 

w→ 0 

∫ 
f ( u ) S( w, x − u )d u , S ( w , x ) =

S ( wx ) is a smoothing function with scale w , and W f ( w , x ) is the
WT of f ( x ) based on the wavelet ψ( w, x) = 

√ 

w ∂ S( w, x) /∂ w. 
In fact, we can generalize equation ( A1 ) to hold for more general

eal wavelets. According to the convolution theorem, the CWT W f ( w ,
 ) can be expressed as 

 f ( w, x) = 

1 

2 π

∫ +∞ 

−∞ 

ˆ f ( k ) 
1 √ 

w 

ˆ ψ 

(
k 

w 

)
e −ikx d k , 

here ˆ f ( k ) and ˆ ψ ( k ) are Fourier transforms of f ( x ) and ψ( x ),
especti vely. Di vide the L.H.S. and R.H.S. of the abo v e equation by
 

w and integrate over w , we obtain 

+∞ ∫ 
0 

W f ( w, x) √ 

w 

d w = 

1 

2 π

+∞ ∫ 
−∞ 

⎛ 

⎝ 

+∞ ∫ 
0 

1 

w 

ˆ ψ 

(
k 

w 

)
d w 

⎞ 

⎠ 

ˆ f ( k ) e −ikx d k . 

(A2) 

et’s observe the value of 
∫ +∞ 

0 
1 
w 

ˆ ψ ( k 
w 

)d w: 

(i) If k = 0, it follows from the oscillatory nature of wavelets
ˆ 
 (0) = 

∫ +∞ 

−∞ 

ψ( x)d x = 0 that 
∫ +∞ 

0 
1 
w 

ˆ ψ ( k 
w 

)d w = 0. Hence, the zero

requency component of ˆ f ( k) is subtracted by CWT. 
(ii) If k > 0 and let u = k / w , we have 

∫ +∞ 

0 
1 
w 

ˆ ψ ( k 
w 

)d w =
 +∞ 

0 
1 
u 

ˆ ψ ( u )d u . 

(iii) If k < 0 and let u = −k / w , we have 
∫ +∞ 

0 
1 
w 

ˆ ψ ( k 
w 

)d w =
 +∞ 

0 
1 
u 

ˆ ψ ( −u )d u . 

It is clear from the abo v e that if the real-valued wavelets satisfy 

( x) = ψ( −x) (A3) 

hich is equi v alent to ˆ ψ ( k) = 

ˆ ψ ( −k), and 

 < 

∣∣∣∣K ψ ≡
∫ +∞ 

0 

1 

k 
ˆ ψ ( k )d k 

∣∣∣∣ < ∞ , (A4) 

hen we get 

1 

K ψ 

∫ +∞ 

0 

W f ( w, x) √ 

w 

d w = 

1 

2 π

∫ 
k �= 0 

ˆ f ( k) e −ikx d k 

= 

1 

2 π

∫ +∞ 

−∞ 

ˆ f ( k) e −ikx d k 

− lim 

δk → 0 

1 

2 π

∫ + δk / 2 

−δk / 2 

ˆ f ( k) e −ikx d k 

= f ( x) − lim 

δk → 0 

δk 

2 π
ˆ f (0) 

= f ( x) − lim 

L →∞ 

1 

L 

∫ L/ 2 

−L/ 2 
f ( x )d x . 
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inally, we arrive at the simple inversion formula for the CWT, which
s 

 ( x) = f̄ + 

1 

K ψ 

∫ +∞ 

0 

W f ( w, x) √ 

w 

d w, (A5) 

here f̄ = lim 

L →∞ 

1 
L 

∫ L/ 2 
−L/ 2 f ( x)d x denotes the average of f ( x )

 v er all space. F or e xample, in the case of periodic func-
ions, f̄ is equal to the average of the function o v er a period.
n the case of compactly supported functions, f̄ is equal to
ero. 

PPENDIX  B:  B-SPLINE  F U N C T I O N S  

he B-spline function of degree zero β0 ( x ) is defined as 

0 ( x) = 

{
1 , −1 / 2 ≤ x ≤ 1 / 2 , 
0 , otherwise , 

(B1) 

nd the B-spline βn ( x ) of degree n is constructed from the n times
onvolution of β0 ( x ): 

n ( x) = 

(
β0 ∗ β0 ∗ . . . ∗ β0 ︸ ︷︷ ︸ 

n times 

)
( x ) . (B2) 

bviously, the B-spline βn 1 + n 2 can be calculated by convolving the
-splines βn 1 and βn 2 as follows 

n 1 + n 2 ( x) = ( βn 1 ∗ βn 2 )( x) . (B3) 

B-splines have many useful properties, which are listed below 

(i) They are compactly supported functions with support interval
 − ( n + 1)/2, ( n + 1)/2] (Briand & Monasse 2018 ). 

(ii) They satisfy a two-scale relation (Vrhel et al. 1997 ), which is 

n ( x/ 2) = 

∑ 

m 

h ( m ) βn ( x − m ) , (B4) 

here the coefficients h ( m ) are given by 

 ( m ) = 

{ 1 
2 n 

(
n + 1 

m + ( n + 1) / 2 

)
, | m | ≤ ( n + 1) / 2 , 

0 , otherwise . 
(B5) 

(iii) The rescaled B-spline of degree n is (Mu ̃ noz et al. 2002 ) 

 βn ( w x) = w 

n + 1 

(
� 

n + 1 
w ∗ D 

−( n + 1) δD 

(
· + 

n + 1 

2 w 

))
( x) , (B6) 

here δD ( x ) is the Dirac delta function, D 

−1 is the antideri v ati ve (or
ntegral) operator defined as 

 

−1 f ( x) = 

∫ x 

−∞ 

f ( u )d u, (B7) 

 

n + 1 
w is the rescaled finite-difference operator defined as 

 � 

n + 1 
w ∗ f )( x) = 

n + 1 ∑ 

m = 0 

a( m ) f ( x − m/w) 

= 

n + 1 ∑ 

m = 0 

( −1) m 

(
n + 1 

m 

)
f ( x − m/w) , (B8) 

nd � 

−1 is the inverse finite-difference operator defined as 

 � 

−1 ∗ f )( x) = 

∑ 

m ≤x 

f ( x − m ) . (B9) 

or the discrete signal f ( n ), its inverse finite-difference s ( n ) =
 � 

−1 ∗f )( n ) can be implemented recursively by 

( n ) = s( n − 1) + f ( n ) . (B10) 
ASTAI 2, 307–323 (2023) 
(iv) The n 1 -th antideri v ati ve of the B-spline of degree n 2 is (Mu ̃ noz
t al. 2002 ) 

 

−( n 1 ) βn 2 ( x) = 

(
� 

−n 1 ∗ βn 1 + n 2 

(
· − n 1 

2 

))
( x) . (B11) 

PPENDI X  C :  I MPLEMENTATI ON  O F  T H E  I IR  

ILTER  

he computation of equations ( 16 ), ( 19 ), and ( 23 ) is essentially to
erform IIR filtering on the signal: 

 out ( n ) = 

(
f in ∗ [( βn ) −1 ] ↑ m 

)
( n ) , (C1) 

here f in ( n ) is the input discrete signal, f out ( n ) is the filtered signal,
 = 2 i for equation ( 19 ), and m = 1 for equations ( 16 ) and

 23 ). By performing the z -transform 

5 on the equation ( C1 ), we
ave 

 out ( z) = B n 0 ( z) F in ( z) , (C2) 

here F out ( z ), F in ( z ), and B n 0 ( z ) are the z -transforms of f out ( n ), f in ( n ),
nd [( βn ) −1 ] ↑ m ( n ), respectively. According to Vrhel et al. ( 1997 ), the
ormula of B n 0 ( z) is 

 n 0 ( z) = d 0 

n 0 ∏ 

j= 1 

B( z; z j ) , (C3) 

n which B( z; z j ) is defined as 

( z; z j ) = 

1 

(1 − z j z −m ) 

−z j 

(1 − z j z m ) 
, (C4) 

nd n 0 is 

 0 = Floor ( n/ 2) . (C5) 

alues of the constant coefficients d 0 and z j are given in Vrhel et al.
 1997 ). 

Therefore, equation ( C2 ) can be expressed as follows 

 0 ( z) = F in ( z) , (C6) 

 j ( z) = B( z ; z j ) F j−1 ( z ) , for 1 ≤ j ≤ n 0 , (C7) 

 out ( z) = d 0 F n 0 ( z) . (C8) 

ombining equation ( C4 ) and ( C6 )–( C8 ), we obtain the following
ecursive filter equations: 

 tem 

( n ) = f j−1 ( n ) + z j f tem 

( n −m ) , ( n = m, . . . , N −1) (C9) 

 j ( n ) = z j 
(
f j ( n + m ) −f tem 

( n ) 
)
, ( n = N −1 −m, . . . , 0) (C10) 

or the input f 0 ( n ) = f in ( n ). Then the output is f out ( n ) = d 0 f n 0 ( n ). 
To calculate f j recursively, we need to know f tem 

( n ) for n = 0,
 . . , m − 1, and f j ( n ) for n = N − 1, . . . , N − m . By assuming that
 j − 1 is periodic o v er N samples, the initial values can be calculated
y 

 tem 

( n ) = 

N l ∑ 

l= 0 

z l j f j−1 [ Mod ( n −lm, N )] , ( n = 0 , . . . , m −1) , (C11) 

 j ( n ) = −
N l −1 ∑ 

l= 0 

z l + 1 
j f tem 

[ Mod ( n + lm, N )] , ( n = N −1 , . . . , N −m ) , 

(C12) 
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Figure D1. The error spectra of the non-periodic signal f 2 ( x ), based on the 
CW-GDW at sampling numbers of N = 128, 256, 512, and 1024. The blue 
lines show the results obtained by the M02CWT algorithm with computing 
the sequence c ( l ) locally at scale levels i ≥ 1. The green lines, labelled as 
‘ill-M02CWT’, show the results obtained by the variant of the M02CWT 

with computing the sequence c ( l ) globally. The red lines, labelled as ‘long 
double’, show the results obtained by the long double implementation of the 
ill-M02CWT. 

Figure D2. The CPU time per scale of the M02CWT , ill-M02CWT , and the 
long double precision ill-M02CWT to compute the numerical CWT of the 
non-periodic signal f 2 ( x ) with the CW-GDW at sampling numbers of N = 

128, 256, 512, and 1024. 
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here N l = ln ε/ln | z j | , ε = 10 is the pre-specified level of
recision, and Mod( a , b ) returns the remainder of the division of
 by b . 
If n 0 = 1 and m = 1, which is the case for the M02CWT and

19CWT algorithms, then it is also convenient to assume that the 
ignal is zero outside the sampled range. Thus the initial values are 

 tem 

(0) = f in (0) , (C13) 

 1 ( N − 1) = −f tem 

( N − 1) 
( N l + 1) / 2 ∑ 

l= 1 

z 2 l−1 
1 . (C14) 

o calculate the convolution between f 1 and β7 (e.g. equations 24 
nd 35 ), we also need to know 

 1 ( n ) = z −n 
1 f 1 (0) , ( n = −6 , . . . , −1) (C15) 

 1 ( N + n ) = −f tem 

( N − 1) 
( N l −n ) / 2 ∑ 

l= 1 

z 2 l+ n 
1 , ( n = 0 , 1) . (C16) 

PPENDIX  D :  A  C C U R A  C Y  TESTS  O F  T H E  

0 2 C W T  A L G O R I T H M  

oth the M02CWT and A19CWT algorithms calculate cumulative 
um of the coefficient sequence c ( l ) four times (see equation 25 ).
o we ver, repeated cumulati ve summation can produce floating- 
oints with huge values, which are less precise. Therefore, if 
e use the sequence of coefficients g ( l ) that is computed in one
o before the scale-dependent operations, i.e. equations ( 24 ) and 
 35 ), then the algorithms will be terribly imprecise, which is not
mphasized in Mu ̃ noz et al. ( 2002 ) and Arizumi & Aksenova 
 2019 ). 

As an example, we use the M02CWT algorithm to illustrate the 
ccuracy issue, and denote its variant with computing g ( l ) globally
s the ill-M02CWT. In Fig. D1 , we show that especially for the large
ampling numbers of N = 512 and 1024, the ill-M02CWT yields 
ery high errors at small scales. The M02CWT reduces the errors
o a great extent. Although the errors of the long double precision
ll-M02CWT are lower, the cost of using it is extremely expensive. 
s shown in Fig. D2 , the CPU time consumed by the M02CWT is

lmost the same compared to the ill-M02CWT, while the long double 
recision ill-M02CWT takes tens of times more CPU time than the 
ll-M02CWT. 
RASTAI 2, 307–323 (2023) 
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