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Abstract

In this work, we propose new statistical tools that are capable of characterizing the simultaneous dependence of
dark matter and gas clustering on the scale and the density environment, and these are the environment-dependent
wavelet power spectrum (env-WPS), the environment-dependent bias function (env-bias), and the environment-
dependent wavelet cross-correlation function (env-WCC). These statistics are applied to the dark matter and
baryonic gas density fields of the TNG100-1 simulation at redshifts of z=3.0-0.0, and to Illustris-1 and
SIMBA at z= 0. The measurements of the env-WPSs suggest that the clustering strengths of both the dark matter
and the gas increase with increasing density, while that of a Gaussian field shows no density dependence. By
measuring the env-bias and env-WCC, we find that they vary significantly with the environment, scale, and
redshift. A noteworthy feature is that at z= 0.0, the gas is less biased in denser environments of Δ 10 around
3 h Mpc−1, due to the gas reaccretion caused by the decreased AGN feedback strength at lower redshifts. We also
find that the gas correlates more tightly with the dark matter in both the most dense and underdense environments
than in other environments at all epochs. Even at z= 0, the env-WCC is greater than 0.9 inΔ 200 andΔ 0.1 at
scales of k 10 h Mpc−1. In summary, our results support the local density environment having a non-negligible
impact on the deviations between dark matter and gas distributions up to large scales.

Unified Astronomy Thesaurus concepts: Large-scale structure of the universe (902); Dark matter (353);
Intergalactic medium (813); Wavelet analysis (1918)

1. Introduction

In the standard paradigm of galaxy formation, small density
fluctuations of baryonic gas start to grow and develop together
with those of dark matter under the gravitational instability
following recombination. At later times, dark matter fluctua-
tions, once they exceed some threshold, will collapse into
virialized halos, within which partial gas condenses and cools
to form galaxies (Mo et al. 2010). Therefore, galaxies are
biased discrete tracers of the underlying matter distribution,
while the gas, as the continuously fluctuating medium, may
better trace the matter distribution. On the simulation side,
many studies have confirmed that the baryonic gas follows the
underlying dark matter distribution on large scales quite well.
For example, the power spectrum of the gas density field is
very close to that of dark matter (e.g., Cui & Zhang 2017;
Springel et al. 2018), the spatial distributions of the dark matter
and the baryonic gas are highly correlated with each other over
a wide range of scales (e.g., Yang et al. 2020, 2021), and the
gas alone can be used to classify the cosmic web in an unbiased
manner (e.g., Cui et al. 2018). Additionally, the intergalactic
gas distribution is receiving increasing attention in observa-
tions. Measuring the large-scale structures of the universe
traced by gas is the goal of a number of upcoming surveys,
such as the Canadian Hydrogen Intensity Mapping Experiment
(CHIME; Bandura et al. 2014), the Hydrogen Intensity and
Real-time Analysis eXperiment (HIRAX; Newburgh et al.
2016), and the Square Kilometre Array (SKA; Bacon et al.
2020).

As the scale becomes smaller, galaxy formation processes,
such as gas cooling, star formation, and feedbacks, have an
increasing influence on the matter clustering, thereby resulting
in a significant bias between the gas and the dark matter. In
particular, the clustering of the gas is strongly suppressed up to
scales a few times 0.1 h Mpc−1, mainly due to the active
galactic nuclei (AGN) feedback, which heats and ejects gas
from halos (van Daalen et al. 2019), while the star formation
consumes the available gas on galactic scales. Due to the
combined effects of nonlinear gravitational evolution and
complex baryonic physical processes, the matter distribution
becomes highly non-Gaussian at small scales and low redshifts.
Moreover, it is well known that there is a strong relationship
between a galaxy’s properties and its density environments. For
instance, massive and quenched galaxies tend to occur in high-
density environments (e.g., Hoyle et al. 2012; Moorman et al.
2016), and the star formation rates of galaxies increase with
environmental density at redshifts z 1, but decrease with
environmental density at redshifts z 1 (e.g., Cooper et al.
2008; Wang et al. 2018; Hwang et al. 2019). The environ-
mental dependence of galactic properties may imply two
aspects. First, galaxies in high-density environments interact
more frequently and therefore strip their gas faster than those in
low-density environments. Second, feedback (e.g., AGN
feedback) efficiency varies in different density environments.
For example, Miraghaei (2020) found in Sloan Digital Sky
Survey Data Release 7 that underdense regions have a higher
fraction of thermal-mode AGNs than overdense regions, for
massive red galaxies, whereas kinetic-mode AGNs prefer to
reside in denser regions.
According to the above statements, deviations of the spatial

clustering between the gas and the dark matter are expected to
depend on both the scale and the density environment.
Quantifying such simultaneous dependence on the scale and
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the environment will hopefully deepen our understanding of
the extent to which baryonic gas follows dark matter. To
achieve this goal, statistical tools that can give the frequency
information, while retaining the spatial information, are
required. However, the traditional two-point correlation func-
tion or its Fourier counterpart, the power spectrum, is only a
univariate function of scale and totally insensitive to non-
Gaussianity, so it is not up to the task. A variety of advanced
statistics beyond the power spectrum have been previously
developed, including but not limited to the bispectrum, which
is a third-order spectrum (see, e.g., Sefusatti et al. 2006;
Foreman et al. 2020), the position-dependent power spectrum,
based on the windowed Fourier transform (Chiang et al. 2014),
the sliced correlation function (Neyrinck et al. 2018), and the
k-nearest neighbor cumulative distribution functions (Banerjee
& Abel 2020). Since the processes associated with galaxy
formation are very complex and poorly understood, predictions
from different statistics are vital to improving our knowledge of
galaxy formation.

As a bivariate function of scale and space, wavelet
transforms are particularly suitable for the issue we are
interested in. With a basis function (i.e., a “wavelet”) that is
well localized, both in the real domain and the frequency
domain, the wavelet transform acts like a “mathematical
microscope,” which allows us to zoom in on fine structures of
the universe at various scales and locations (e.g., Kaiser &
Hudgins 1994; Addison 2017). There are two major types of
wavelet transforms—the discrete wavelet transform (DWT)
and the continuous wavelet transform (CWT)—both of which
are widely employed in cosmology (see, e.g., Martínez et al.
1993; Pando & Fang 1996; Fang & Feng 2000; Starck et al.
2004; Liu & Fang 2008; Zhang et al. 2011; Arnalte-Mur et al.
2012; da Cunha et al. 2018; Shi et al. 2018; Copi et al. 2019;
Wang et al. 2021). Besides, there are also some other wavelet
transform variants, e.g., the wavelet scattering transform
(Mallat 2012), which performs two operations repeatedly—
(1) wavelet convolution and (2) modulus—and has been
proved to be superior to the Fourier power spectrum for
cosmological parameter inference (e.g., Allys et al. 2020;
Cheng et al. 2020; Valogiannis & Dvorkin 2022). However,
using wavelets to investigate the scale and environmental
dependence of matter clustering seems to have been neglected
in most previous studies. Due to the arbitrary scale choices and
translational invariance of the CWT (Addison 2017), we will
employ it to analyze the deviation between the dark matter and
gas distributions, and quantify its dependence on both the scale
and density environment.

The most criticized aspect of the CWT is that its computation
consumes more time and resources than that of the DWT.
However, the Fourier convolution theorem allows us to
compute the CWT quickly, by utilizing a fast Fourier transform
(FFT) with a complexity of ( )O N Nlog at each scale (Torrence
& Compo 1998). In addition to this, much research has been
dedicated to the fast implementation of the CWT in the real
domain (Rioul 1991; Unser et al. 1994; Berkner & Wells 1997;
Vrhel et al. 1997; Muñoz et al. 2002; Omachi & Omachi 2007;
Patil & Abel 2009; Arizumi & Aksenova 2019). For example,
by decomposing the wavelet function and signal into B-spline
bases, Muñoz et al. (2002) converted the CWT into a
convolution of two B-splines, which could be expressed
analytically and had a lower number of operations. Omachi
& Omachi (2007) achieved a fast computation of the CWT by

representing the wavelet as a polynomial within its compact
support interval. The most recent algorithm, proposed by
Arizumi & Aksenova (2019), approximates the mother wavelet
as piecewise polynomials. Although it is claimed that all these
algorithms are better than FFT, they are restricted to 1D and
special wavelets. Therefore, the efficiency of these methods
might not be guaranteed for general wavelet functions or for
high dimensions. In the present work, the fast computation of
CWT is implemented by the FFT.
In a previous work (Wang & He 2021), we developed a new

method for designing continuous wavelets, in which those
wavelets are constructed by taking the first derivative of the
smoothing function, e.g., the Gaussian function, with respect to
the positively defined scale parameter. The convenience of this
method is due to the original signal being reconstructed
through a single integral of the continuous wavelet coefficients.
Furthermore, Wang et al. (2021) introduced wavelet-based
statistical quantities, including the wavelet power spectrum
(WPS), wavelet cross-correlation (WCC), and wavelet bico-
herence. By evenly splitting the whole simulation box into
subcubes, Wang et al. (2021) suggest that the properties of the
matter clustering depend on the local mean density of the
subcube. However, we realize that this is not a wise way to
divide the environment and that it does not fully reflect the
power of the wavelet techniques. On the one hand, the cubic
environment could not isolate a special structure, say a halo,
from its surroundings. On the other hand, the CWT varies with
the spatial position at a fixed scale, and therefore with the local
density at that location. Following this idea, we can build more
flexible wavelet statistics that depend directly on the local
density and scale. In this study, we propose the environment-
dependent wavelet power spectrum (env-WPS) and the
environment-dependent wavelet cross-correlation function
(env-WCC). The env-WPS measures the strength of the matter
clustering across different scales within a density interval,
while the env-WCC measures the statistical coherence of the
spatial distributions between the gas and the dark matter. The
environment-dependent bias function (env-bias) reflects the
scale- and environment-dependent bias between the gas and the
dark matter.
The environmental dependence requires wavelets with good

spatial resolution, and the scale dependence requires wavelets
with good frequency resolution. As a result, a wavelet that can
achieve a good trade-off between these two resolutions is
necessary. To achieve this, the analytic wavelet function that
we use here is derived from a Gaussian function weighted by a
cosine function, which has a better frequency resolution than
the Gaussian-derived wavelet (GDW) used in previous works
(Wang & He 2021; Wang et al. 2021) and also maintains a
reasonable spatial resolution. In this study, we apply the env-
WPS and the env-WCC to the density fields of three
cosmological simulations: Illustris (Nelson et al. 2015),
IllustrisTNG (Nelson et al. 2019), and SIMBA (Davé et al.
2019).
The rest of this work is structured as follows. We briefly

describe the simulations we used in Section 2, and introduce
the fundamental theories in Section 3. Our main results
regarding the dependence of the matter clustering on both the
scale and the environment are given in Section 4. Finally, in
Section 5, we discuss and summarize our main findings and
present the conclusions.
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For convenience of the readers, in Table 1, we list the
wavelet-related acronyms used in our paper, with their
meanings.

2. Data Sets

For our analysis, we utilize three state-of-the-art cosmolo-
gical simulations: Illustris3 (Vogelsberger et al. 2013, 2014;
Genel et al. 2014; Nelson et al. 2015), IllustrisTNG4 (Marinacci
et al. 2018; Naiman et al. 2018; Nelson et al. 2018, 2019;
Pillepich et al. 2018a; Springel et al. 2018), and SIMBA5 (Davé
et al. 2019). In particular, we mainly focus on the density fields
drawn from the IllustrisTNG100-1 run at redshifts
z= 0, 1, 2, and 3. The present-day (z= 0) density fields of the
Illustris-1 and fiducial SIMBA run (m100n1024) are
used for comparison to that of IllustrisTNG100-1.

1. The Illustris simulation tracks the evolution of the
baryonic and dark matter from redshift z= 127 to the
present day, by using the adaptive moving-mesh AREPO
code (Springel 2010). The adopted cosmological para-
meters are ΩΛ= 0.7274, Ωm=Ωdm+Ωb= 0.2726,
Ωb= 0.0456, σ8= 0.809, ns= 0.9631, and h= 0.704,
consistent with the constraints from WMAP-9 (Bennett
et al. 2013). The subgrid models of galaxy formation are
described in detail in Vogelsberger et al. (2013) and
Torrey et al. (2014), including star formation and
associated supernova feedback, supermassive black hole
accretion, and related AGN feedback (thermal-mode and
kinetic-mode). In fact, the AGN feedback in Illustris is so
effective that it can lead to a lower gas fraction in the
halos, which is in conflict with the observations (Genel
et al. 2014). The Illustris-1 run that we used has a
box of volume ( ) ( )-h75 Mpc 106.5Mpc1 3 3 and con-
tains 18203 dark matter particles of mass∼6.26×
106Me, plus 18203 initial gas cells with average
mass∼1.26× 106Me.

2. The IllustrisTNG (hereafter, TNG) simulation is the
successor of the Illustris project, which is also
executed with the AREPO code and consists of three
simulation volumes: TNG300, TNG100, and TNG50.
All these runs assume Planck concordance cosmology
(Planck Collaboration XIII 2016), i.e., ΩΛ= 0.6911,
Ωm=Ωdm+Ωb= 0.3089, Ωb= 0.0486, σ8= 0.8159,

ns= 0.9667, and h= 0.6774. Compared with earlier
Illustris simulations, TNG uses updated physical models
and numerical methods and yields better consistency with
the available observations of galaxy formation and
evolution. Thus, it provides us with an ideal laboratory
for testing theoretical models and developing new
analysis tools to achieve a more precise understanding
of structure formation and galaxy formation. The details
of the TNG model for galaxy formation are given in
Pillepich et al. (2018b) and Weinberger et al. (2018). In
this work, we use density fields of the TNG100-1
simulation at redshifts z= 0.0, 1.0, 2.0, and 3.0. This
simulation adopts a periodic box of side length
Lbox= 75 h−1 Mpc; 110.7 Mpc, and uses the same
initial conditions as Illustris-1. The mass of each
dark matter particle is∼7.5× 106Me and the initial
baryonic mass resolution is∼1.4× 106Me.

3. The SIMBA simulation suite is performed with the
meshless finite-mass hydrodynamics code GIZMO
(Hopkins 2015), and includes four simulation volumes:
m100n1024, m50n1024, m25n1024, and
m12.5n1024, all starting at z= 249 and ending at
z= 0. These simulations also assume the Planck con-
cordance cosmology (Planck Collaboration XIII 2016):
ΩΛ= 0.7, Ωm=Ωdm+Ωb= 0.3, Ωb= 0.048, σ8= 0.82,
ns= 0.97, and h= 0.68. The implementation of the galaxy
formation physics in this simulation, e.g., AGN feedback,
stellar feedback, gas cooling, and star formation, can be
found in Davé et al. (2019). With these sophisticated
models, SIMBA is also capable of reproducing a wide
range of observations. The fiducial SIMBA run
(m100n1024) used here has a box size of
100 h−1Mpc; 147 Mpc, with 10243 dark matter particles
plus 10243 gas cells. The mass resolution is∼ 9.6×
107Me for dark matter and∼ 1.82× 107Me for gas.

3. Continuous Wavelet Methods

3.1. The 1D Cosine-weighted Gaussian-derived Wavelet

In previous works (Wang & He 2021; Wang et al. 2021), we
applied the GDW, a low-oscillation wavelet, to the spectral
analysis of the matter clustering in 1D and isotropic cases.
However, low-oscillation wavelets are more extended in
Fourier space, which can mean that the results of spectral
analysis at small scales are contaminated by large scales (Frick
et al. 2001). To achieve a better separation of scales, we take
the Gaussian function weighted by the cosine as the smoothing
function, then derive the wavelet from it. In 1D, the form of
such a cosine-weighted Gaussian-derived wavelet (CW-GDW)
is constructed as below. From the cosine-weighted Gaussian
smoothing function
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Table 1
The Wavelet-related Acronyms Used in the Paper, with Their Meanings

Explained

Acronym Meaning

CWT continuous wavelet transform
GDW Gaussian-derived wavelet
CW-GDW cosine-weighted Gaussian-derived wavelet
WPS wavelet power spectrum
WCC wavelet cross-correlation
env-WPS environment-dependent wavelet power spectrum
env-WCC environment-dependent wavelet cross-correlation function
env-bias environment-dependent bias function

3 https://www.illustris-project.org/
4 https://www.tng-project.org/
5 http://simba.roe.ac.uk/
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where the dimensionless constant α; 2.20473, which is used
to set w to be the peak frequency of ˆ ( )y w k, . The index κ= 1/
2 guarantees that the integral of the square of the wavelet is
conserved across different scales. Compared to the GDW, the
CW-GDW has better spectral resolution, as shown in Figure 1.
This wavelet can be generalized to higher dimensions, for
analyzing the large-scale structures of the universe. The

isotropic and anisotropic CW-GDWs are both described as
follows.

3.2. The 3D Isotropic CW-GDW Transform

The 3D isotropic CW-GDW is defined in Fourier space by
taking the derivative of the isotropic cosine-weighted Gaussian
smoothing function ˆ ( )kG w,cos w.r.t. w,
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where the index κ=−1/2, in this case. It can be seen that
ˆ ( )Y kw, depends only on the magnitude of the wavevector, i.e.,
ˆ ( ) ˆ ( )Y = Ykw w k, , , which is shown in the lower panel of
Figure 2. The isotropic CW-GDW Ψ(w, r) in real space can be
computed numerically by FFT, which is plotted in the upper
panel of Figure 2.

Figure 1. Comparison of the 1D GDW (thin line) and CW-GDW (thick line) in
the real (top) and Fourier (bottom) domain, at scale w = 1. For presentational
convenience, all variables are dimensionless.

Figure 2. The isotropic CW-GDW in the real (top) and Fourier (bottom)
domain, at three scales, w = 1, 2, and 3. For presentational convenience, all
variables are dimensionless.
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By convolving the density contrast ( ) ( ( ) )d r r r= -r r
with the isotropic CW-GDW, we get the wavelet transform
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where ˆ ( )d k is the Fourier transform of δ(r), which is estimated
by interpolating the mass of each particle to a regular grid with
10243 cells, using the cloud-in-cell method. From Equation (4),
the CWT corresponds to a local filtering of δ(r) around
wavenumber |k|∼w. According to Appendix B of Wang et al.
(2021), the original density field can be reconstructed by

( ) ( ) ( )òd = k
+¥

-r rw W w dw, . 5
0

In many investigations, the comparison between a wavelet
transform and a Fourier transform at a given scale requires the
correspondence between the wavelet scale w and the Fourier
wavenumber |k|, which is

∣ ∣ ( )= kw c , 6w

with cw; 0.85617 for the isotropic CW-GDW, determined by
the wavelet spectral peak of a harmonic wave with frequency
|k| (e.g., Meyers et al. 1993; Torrence & Compo 1998; Wang
et al. 2021).

3.3. The 3D Anisotropic CW-GDW Transform

Following the logic of Wang & He (2021), the 3D
anisotropic CW-GDW can be obtained from the 1D version,
as shown below:
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with the Fourier transform

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )y y yY =w k w k w k w k, , , , , 8x x y y z z

where the index κ= 1/2, ( ) ( ) ( ) ( )=w rG g w x g w y g w z, , , ,x y zcos cos cos cos

is the anisotropic cosine-weighted Gaussian smoothing function
with r= (x, y, z), and w= (wx, wy, wz) is the scale vector. In
contrast to the isotropic CW-GDW, which can only dilate or
contract in the radial direction, the anisotropic one can have
different dilations along different spatial axes. For example, three
scale configurations—w= (1, 1, 1), (1, 2, 1), and (1, 2, 2)—are
illustrated in Figure 3. Intuitively, the CW-GDWwith a scale of (1,
1, 1) may have a stronger response to the clumps of the cosmic
web, while those with scales of (1, 2, 1) and (1, 2, 2) may have
better responses to the sheet and filamentary structures,
respectively.

By using the anisotropic CW-GDW, the wavelet transform
of the density contrast δ(r) is given by
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In this anisotropic case, the reconstruction formula is a triple
integral w.r.t. the scale space,

∭( ) ( ) ( )d = k k k
+¥

- - -r w r ww w w W d, , 10x y z

0

3

which is the extension of the 1D reconstruction formula given
in Wang et al. (2021). The relation between the wavelet scale
w= (wx, wy, wz) and the Fourier wavevector k= (kx, ky, kz) is

∣ ∣ ∣ ∣ ∣ ∣ ( )= = =w c k w c k w c k, , , 11x w x y w y z w z

with cw; 0.94411, determined by the wavelet spectral peak of
a harmonic wave in each spatial axis.

3.4. Wavelet Statistics

Being the inverse Fourier transforms of ˆ ( ) ˆ ( )d Yk kw, or
ˆ ( ) ˆ ( )d Yk w k, , the CWTs of density fields can be efficiently
implemented by FFT. For illustration, we compare in Figure 4
the CWTs of the TNG100-1 dark matter density field δdm(r) at
z= 0 and the Gaussian field constructed by randomizing phases
of ˆ ( )d kdm . Therefore, these two fields share the same power
spectrum, which is totally insensitive to non-Gaussianity. In
contrast, the CWT of the non-Gaussian dark matter field is
completely different from that of the Gaussian field, which is
attributed to the CWT preserving both the scale information
and the spatial texture of the fields. Notice that clusters are
highlighted by the isotropic CW-GDW and anisotropic CW-
GDW, with a scale of w= (4.09, 4.09, 4.09) h Mpc−1, and the
vertical and horizontal filaments are captured by the anisotropic
CW-GDWs with w= (5, 0.5, 5) h Mpc−1 and w= (0.5, 5,
5) h Mpc−1, respectively. Because the CWT of the density
field varies with the spatial coordinate r at a given scale, it
should be a function of the local density fluctuation δ(r). With
this in mind, we can interpret the simultaneous dependence of
the matter clustering on the scale and the density environment
using statistics developed from the CWT.
We now introduce some wavelet statistics by means of the

isotropic CW-GDW transform. To measure the clustering
strength in different environments, we take the average of the
wavelet coefficients at each scale with the same local density,
i.e., δ(r)= δ, which is designated as the env-WPS, as shown
below:

( ) ∣ ( )∣ ( )( )d º á ñd d=rP w W w, , , 12r
W
i i

2

where the subscript “i” refers to either dark matter or gas, and
Wi(w, r) is the isotropic CW-GDW transform of the corresp-
onding density field. We use ( ) ( ) ¯ ( )r r dD = = +r r r1 to
denote the density field of the total matter, with
δ(r)= (Ωdmδdm(r)+Ωbδgas(r))/Ωm.

6 Practically, the densities

6 We simply use the gas overdensity here to refer to the total baryon
overdensity, since most of the baryons are in gaseous form (Bregman 2007).
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are divided into 16 bins: (a) 14 logarithmic bins equally divided
between Δ= 0.1 and Δ= 200; (b) one with Δ< 0.1 (extreme
underdense environments); and (c) one with Δ> 200 (usually
the halo environments). If we average over all the possible
densities, then the env-WPS will degenerate to the global WPS,

( ) ∣ ( )∣ ∣ ( )∣( )= á ñ = á ñdr rP w W w W w, , ,r
W

Vi i
2

all i
2

box

which is proportional to the Fourier power spectrum (Wang
et al. 2021).

We define the env-bias as the square root of the ratio of the
env-WPS of gas to that of dark matter,

( )
( )
( )

( )d
d

d
ºb w

P w

P w
,

,

,
, 13W

W

W

gas

dm

which enables the dark matter CWT to be reconstructed from
the gas CWT, as illustrated below:

( ) ( ) ( )d¢ =r rW w W w b w, , , ,W
dm gas

where the gas CWTWgas(w, r) is divided by the env-bias b
W(w,

δ), if δ(r) is in the density bin δ. Inspired by the bias research
(Bonoli 2009) based on the Fourier power spectrum, the

reconstruction error can be estimated by

( )
∣ ( ) ( )∣

∣ ( )∣
( )

( )
 d =

á ¢ - ñ
á ñ

d d

d d

=

=

r r

r
w

W w W w

W w
,

, ,

,
.r

r

dm dm
2

dm
2

According to Equations (12) and (13), we arrive at

( ) ( ( )) d d= -w C w, 2 1 , ,W

where CW(w, δ) is defined as

( )
( ) ( )

( ) ( )
( )( )d

d d
º

á ñd d=r r
C w

W w W w

P w P w
,

, ,

, ,
, 14

rW

W W

gas dm

gas dm

namely, the env-WCC between the gas and dark matter fields.
It is a measure of the statistical coherence between these two
fields, and takes values between −1 and 1. If CW(w, δ)= 1,
then the fields are totally correlated, hence the dark matter can
be fully determined from the gas by bW(w, δ). On the other
hand, if CW(w, δ)=− 1, then the fields are totally antic-
orrelated. Apparently, once bW(w, δ) and CW(w, δ) are known,
the characteristics of the dark matter field can be constrained
more accurately from the baryonic observations.
Notice that the above statistics are built on the assumption of

an isotropic matter distribution. Generally, the anisotropic
statistics as functions of the scale vector w and the local
overdensity δ can be derived from the anisotropic CW-GDW
transform in the same way. For instance, the anisotropic env-

Figure 3. Contour plots of the anisotropic CW-GDW with different scales, in real space (upper panels) and in Fourier space (lower panels). Left column: the
anisotropic CW-GDW and its Fourier counterpart at scale w = (1, 1, 1). Middle column: the anisotropic CW-GDW and its Fourier counterpart at scale w = (1, 2, 1).
Right column: the anisotropic CW-GDW and its Fourier counterpart at scale w = (1, 2, 2).
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WPS, env-bias, and env-WCC are

( ) ∣ ( )∣ ( )( )d º á ñd d=w w rP W, , , 15r
W
i i

2

( )
( )
( )

( )d
d

d
ºw

w

w
b

P

P
,

,

,
, 16W

W

W

gas

dm

( )
( ) ( )

( ) ( )
( )( )d

d d
º

á ñd d=w
w r w r

w w
C

W W

P P
,

, ,

, ,
, 17

rW

W W

gas dm

gas dm

respectively. By taking the average of these anisotropic
statistics over all w with the same modulus, they will reduce
to the isotropic ones defined by Equations (12), (13), and (14),

i.e.:

( ) ∣ ( )∣ ( )

( )
( )
( )

( )

( )
( ) ( )

( ) ( )
( )








 

d d

d
d

d
d

d
d d

d

=á ñ ~

= ~

=
á ñ

~

d

d

w r

w r w r

w W P w

b w
w

w
b w

w
W W

w w
C w

, , ,

,
,

,
,

,
, ,

, ,
, .

W
w

W

W
W

W
W

W w

W W

W

i i
2

, i

gas

dm

gas dm ,

gas dm

Since we only care about the dependence of the clustering on
the scale modulus w and the local density δ, and also for the
sake of minimizing computational effort, we will use those
statistics based on the isotropic CW-GDW.7

Figure 4. Top row: the TNG100-1 dark matter density field at z = 0 and the Gaussian field with the same Fourier power spectrum in a 75 × 75 h−2 Mpc2 slice of
thickness 1 h−1 Mpc. Middle row: the CWTs of the TNG100-1 field in the same slice. Specifically, the left plot is the isotropic CW-GDW transform at scale
w = 6.42 h Mpc−1. The three plots on the right are anisotropic CW-GDW transforms at scales of w = (4.09, 4.09, 4.09) h Mpc−1, (5, 0.5, 5) h Mpc−1, and (0.5, 5,
5) h Mpc−1, respectively. Bottom row: the same as the middle row, but for the Gaussian field with the equivalent power spectrum. By using Equations (6) and (11), it
can be seen that all these wavelet scales correspond to a Fourier scale of |k| ≈ 7.5 h Mpc−1.

7 In the Appendix, we make comparisons between global WPSs based on the
isotropic and anisotropic CW-GDW.
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4. Results

We present our main results for the dark matter and baryonic
gas clustering at redshifts 0� z� 3. In particular, we explore
how the dark matter and gas clustering depends on the
environment by computing the env-WPS. We also quantify the
deviation between the dark matter and gas distributions by
computing the env-bias and env-WCC. In all the results below,
the wavelet scale w is expressed as the Fourier wavenumber k,
according to the relation given by Equation (6). To ensure that
our results are unaffected by aliasing effects, we only consider
the scales of w< cwkNyq/2, where kNyq= 1024π/Lbox is the
Nyquist frequency.

4.1. The Env-WPS of the Density Field

In Figure 5, we compare the env-WPSs of a statistically
homogeneous Gaussian random field with power-law spectrum
P(k)∝ k−2 and the TNG100-1 dark matter density field at
redshift z= 0. For the Gaussian field, which is completely
characterized by the Fourier power spectrum, we can see that
its env-WPS shows no environmental dependence. However,
for the dark matter field at z= 0, the env-WPS exhibits a strong
dependence on the density environment, confirming that this
field is highly non-Gaussian. We show the evolution of the
environmental dependence of the matter clustering with
redshift in Figure 6, in which we focus on the env-WPSs of
the dark matter and gas at z= 3.0, 2.0, 1.0, and 0.0. Now let us

consider the behavior of the dark matter. At z= 3, WPSs in
different environments already exhibit different clustering
strengths, except on the largest scales, where they all converge
to the global WPS. Specifically, the env-WPS monotonically
increases toward higher-density environments on almost all
scales. This result is intuitive, because high-density environ-
ments contain more gravitationally bound objects (e.g., halos
and subhalos) than low-density environments (e.g., Maulbetsch
et al. 2007). At lower redshifts, the env-WPS continues to
maintain the same dependence on density environment with
enhanced amplitude, mainly due to nonlinear gravitational
effects. For the gas component, its env-WPS follows the
behaviors of the dark matter. However, on intermediate and
small scales, the env-WPSs of the gas are suppressed, due to
baryonic processes resisting the collapse of gas, particularly
due to AGN feedback, which heats and expels gas from halos
to large radii (e.g., van Daalen et al. 2019).
The differences between the dark matter and gas fields can

be precisely investigated by the env-bias and env-WCC, which
are exhibited in the following.

4.2. The Env-bias of the Gas Relative to the Dark Matter

We now turn to consider the env-bias of the gas relative to
the dark matter, the results of which are shown in Figure 7. We
observe that the environmental bias function bW(k, δ) is almost
independent of the scale and density environment on very large
scales at all epochs. As the scale gets smaller, the environ-
mental dependence of the bias becomes increasingly promi-
nent. The main visible feature is the gas being most severely
biased in the densest environment (Δ> 200), and at small
scales for all redshifts, while the gas in the extreme underdense
environment (Δ< 0.1) shows only minor bias. In more detail,
we see that at z= 3, the env-bias value decreases mono-
tonically as the density increases on scales 0.5 k
10 h Mpc−1, which is consistent with higher gas pressure in
denser environments. Note that at this redshift, the suppression
of the gas clustering is largely due to the gas pressure, while
feedbacks play a minor role (see van Daalen et al. 2011; Chisari
et al. 2018; Foreman et al. 2020). This monotonically
decreasing trend of the env-bias with increasing density
becomes weaker toward lower redshifts, and eventually, at
z= 0, the env-bias hardly varies with the density on scales
k 1 h Mpc−1, and even shows an upturn in densities of
Δ 10 around the scale of k∼ 3 h Mpc−1. We also notice that
in these densities, the contours of bW 0.8 are shifted to
smaller scales, compared to the case of z= 1. Since, at z< 3,
the AGN feedback causes most of the suppression on scales of
k 10 h Mpc−1, the redshift evolution of the env-bias in this
scale range may reflect the AGN feedback efficiency in denser
environments being reduced more severely than in less dense
environments at lower redshifts. Hence, the gas in denser
environments can be preferentially reaccreted to massive halos,
confirming the findings of previous research. For example, by
measuring the ratio between the total-matter power spectra in
the Horizon-AGN and Horizon-noAGN simulations,
Chisari et al. (2018) found that the clustering suppression at
a scale of k∼ 2 h Mpc−1 diminished slightly from z= 1 to 0,
and ascribed it to the AGN feedback being less efficient in the
most massive halos at lower redshifts. Foreman et al. (2020)
measured the ratio of the bispectra between the hydro and dark
matter–only simulation runs, and found that it was enhanced at

Figure 5. Comparison of the env-WPS of the Gaussian density field and that of
the non-Gaussian density field. Top panel: the env-WPS of the Gaussian
density field with power-law power spectrum P(k) ∝ k−2. Bottom panel: the
env-WPS of the TNG100-1 dark matter density field at z = 0, which is highly
non-Gaussian. The environment is defined according to the density division
scheme described in Section 3.4, in descending order of density from top to
bottom. The global WPS is plotted as a dashed line in each panel for reference.
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Figure 6. The env-WPSs of the dark matter (top) and baryonic gas (bottom) density fields of TNG100-1 at z = 3, 2, 1, and 0. The solid lines show the results for all
the environments, as in Figure 5. In each panel, the global WPS (the dashed black line) is plotted for comparison.

Figure 7. The env-bias of the gas with respect to dark matter, defined by Equation (13), at redshifts z = 3, 2, 1, and 0, measured from the TNG100-1 simulation. The
bias is roughly constant on large scales, with bW ∼ 0.977 at z = 3, bW ∼ 0.967 at z = 2, bW ∼ 0.964 at z = 1, and bW ∼ 0.973 at z = 0.
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z= 0, k∼ 3 h Mpc−1 in TNG300-1, TNG100-1, and EAGLE,
which was also due to less effective AGN feedback.

On the galactic scales, i.e., k 10 h Mpc−1, the gas
clustering is affected by the joint actions of gas cooling, star
formation, and feedbacks, the former two of which are
subdominant at the scales we are concerned with
(k 20 h Mpc−1). As expected, the env-bias is approximately
enhanced with increasing overdensity, indicating that denser
environments experience more violent baryonic processes at
the redshifts we consider. This result is consistent with the fact
that denser environments host higher fractions of quenched
galaxies (see, e.g., Hoyle et al. 2012; Moorman et al. 2016).

To determine whether our results depend on the particular
galaxy formation model included in TNG100-1, we also
measure the env-bias at z= 0 from the Illustris-1 and
SIMBA simulations, which have similar box sizes to TNG100-1.

In Figure 8, the upturn in densities of Δ 10 around the scale of
3 h Mpc−1 is also observed in SIMBA, which is even more
obvious than in TNG100-1. Illustris-1 does not show this
feature, which may be due to its overefficient AGN feedback for
massive halos (Genel et al. 2014). For the same reason, the gas in
Illustris-1 suffers the most severe suppression (particularly
bW∼ 0.2 in Δ 10 and at k 2 h Mpc−1) compared to the
other simulations. Nonetheless, all simulations agree with the gas
being more strongly biased in denser environments and on
smaller scales at z= 0.

4.3. The Env-WCC between the Dark Matter and the Gas

The time evolution of the env-WCC versus scale and density
is shown in Figure 9. Overall, we see that the env-WCC is very
close to 1 on large scales for all redshifts, which means that the

Figure 8. The env-bias of the gas at z = 0 measured from three simulations: TNG100-1, Illustris-1, and SIMBA.

Figure 9. The env-WCC between the gas and the dark matter defined by Equation (14) at redshifts z = 3, 2, 1, and 0, measured from the TNG100-1 simulation. The
env-WCC approaches unity on large scales, indicating that the gas and the dark matter are coherent with each other.
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distributions of the gas and the dark matter are highly coherent
on large scales, and therefore the env-bias alone would be
sufficient to derive the dark matter field from the gas field. As
the scale decreases, the deviation of the env-WCC from unity
becomes larger and shows a stronger environmental depend-
ence, which is due to the redistribution of gas caused by
baryonic physical processes.

As revealed by the CW= 0.99 contour, the gas and the dark
matter in the densest environment (Δ 200) always keep a
very high correlation at scales k 3 h Mpc−1 for all redshifts.
We notice that Farahi et al. (2022) reached a similar
conclusion: in the TNG100-1 simulation, the correlation
between the dark matter and gas density profiles of halos is
very close to 1 on scales of r> R200, where R200 is the radius of
a sphere whose enclosed average overdensity is 200 times the
critical density. However, the 0.99 contour in less dense
environments is shifted to larger scales at later times.

It can also be seen at z= 3 that the env-WCC shows an
obvious nonmonotonic dependence on overdensity at scales of
k 10 h Mpc−1, and is the lowest (CW< 0.90) between
Δ∼ 10 and Δ∼ 40. This least-correlated region in the k− δ
plot gradually expands to larger scales and lower-density
environments with decreasing redshift, but is still concentrated
in the environments of 0.1Δ 200 (roughly the filaments
and sheets). The gas always correlates tightly with the dark
matter in the extreme underdense environments (Δ∼ 0.1) from
z= 3 to 0. Yang et al. (2021) also reported this feature and
pointed out that the gas and the dark matter correlate more
tightly in voids.

In Figure 10, we compare the env-WCC measured from
TNG100-1 with those measured from Illustris-1 and
SIMBA at z= 0. All of them show similar trends, with some
discrepancies, possibly attributed to different galaxy formation
models. Specifically, the gas correlates less with the dark
matter in Illustris-1, and in the most underdense
environments (Δ< 0.1) the env-WCC is even less than 0.80
at scales of 1 k 10 h Mpc−1, whereas this correlation
between the gas and the dark matter is largely enhanced in
TNG100-1, with an updated AGN feedback model. The
characteristics of the env-WCC in SIMBA are intermediate
between those in Illustris-1 and TNG100-1.

5. Discussion and Conclusions

In this paper, we propose three 3D wavelet-based statistical
tools—(1) the env-WPS; (2) the env-bias; and (3) the env-

WCC—which are defined as Equations (12), (13), and (14),
respectively. These statistics are constructed from continuous
wavelet coefficients, which simultaneously retain spatial and
scale information. Therefore, we expect them to be able to
quantify the density environment effects on the matter
clustering at various scales. To verify this, we apply them to
the dark matter and gas density fields of three state-of-the-art
cosmological simulations: TNG100-1, Illustris-1, and
SIMBA. To achieve a better spectral analysis, we use the CW-
GDW as our analytic wavelet. Compared to the GDW used in
our previous works (Wang & He 2021; Wang et al. 2021), this
new wavelet has a higher resolution in the frequency domain,
and therefore the global WPS based on it is much closer to the
Fourier power spectrum, particularly on small scales (see
Appendix).
This study has confirmed that the env-WPS, env-bias, and

env-WCC are able to correctly characterize the dependence of
the matter clustering on both the scale and the local density
environment. The comparison of the env-WPSs between a
Gaussian field and the present-day dark matter field shows that
the env-WPS is fully capable of detecting non-Gaussianity (see
Figure 5). Thus, it is promising that the env-WPS will be able
to constrain cosmological parameters more tightly. The env-
WPSs of the dark matter and gas exhibit similar features: they
both converge to the global WPS at large scales, while at small
scales they increase with increasing density at z= 3, 2, 1, and 0
(see Figure 6).
The differences of the spatial distributions between the gas

and the dark matter are quantified by the env-bias and env-
WCC (Figures 7–10). We notice that at redshift z= 3, the env-
bias decreases with increasing density up to scales of a few
times 0.1 h Mpc−1 in TNG100-1, indicating that the gas
clustering is more suppressed in denser environments. At later
times, when the AGN feedback effect is significant, this
decreasing trend becomes progressively weaker, and eventually
an increasing trend emerges at z= 0, i.e., the env-bias shows an
upturn around k∼ 3 h Mpc−1 and in Δ 10, which is also
observed in SIMBA, but not in Illustris-1. This feature is
likely a consequence of the decreased AGN feedback strength
occurring in high-density environments at later epochs, which
is supported by other research (Chisari et al. 2018; Foreman
et al. 2020).
Moreover, by measuring the env-WCC in TNG100-1, we

find that the dark matter and the gas in both the extreme dense
(Δ 200) and underdense (Δ 0.1) environments always

Figure 10. The env-WCC between the gas and the dark matter at z = 0 measured from three simulations: TNG100-1, Illustris-1, and SIMBA.

11

The Astrophysical Journal, 934:112 (14pp), 2022 August 1 Wang & He



maintain very high correlation at all redshifts over a wide scale
range, which qualitatively agrees with the findings in Farahi
et al. (2022) and Yang et al. (2021). Particularly at the present
epoch, the env-WCC is greater than 0.9 in densities of Δ 200
and Δ 0.1 at scales of k 10 h Mpc−1. However, the dark
matter and the gas correlate less well in density environments
of 0.1<Δ< 200. A similar dependence is also observed in
Illustris-1 and SIMBA, but with lower env-WCC values,
possibly attributed to different galaxy formation models.

In general, our results suggest that density environment has a
non-negligible impact on the characteristics of the matter
clustering at low redshifts. Even on large scales of
k 1 h Mpc−1, there is a visible density dependence for the
env-bias. The env-WCC also shows density dependence up to
scales of 2 h Mpc−1, and this is even larger in Illustris-1
and SIMBA. Consequently, by means of the env-bias and the
env-WCC, the dark matter distribution should be predicted
more precisely from the baryonic gas, which could be observed
by upcoming sky surveys, e.g., CHIME (Bandura et al. 2014),
HIRAX (Newburgh et al. 2016), and SKA (Bacon et al. 2020).
In this sense, more cosmological simulations are needed to
conduct a detailed census of the env-bias and the env-WCC for
dark matter and gas. Furthermore, considering different gas
phases, such as the warm–hot intergalactic medium or the
diffuse intergalactic medium, may be more meaningful.
Additionally, it is also important to investigate the differences
between other tracers, such as halos and galaxies, and the dark
matter density field from our wavelet statistics. These issues are
left for future investigations.
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Appendix
Comparison between the Global WPS and the
Conventional Fourier Power Spectrum in 2D

Until now, we have designed two kinds of wavelets, i.e., the
GDW and the CW-GDW. Here, we check whether these
wavelets could reproduce the Fourier power spectrum, which is
important to do, since most works on matter clustering are done
by Fourier analysis. To do this, we create a 2D Gaussian
random field with a given power-law power spectrum
P(k)= 0.1k−2 and make a comparison between its measured
Fourier and global WPS, based on the anisotropic GDW and
CW-GDW, which are computed by averaging all the wavelet
coefficients over the whole space and the scale vector w with
the same modulus. As shown in the bottom left panel of
Figure A1, both the WPS with anisotropic GDW and CW-
GDW, as well as the Fourier power spectrum, converge to the
power-law power spectrum. Then we measure the Fourier and
global WPS of the 2D density field of the dark matter at z= 0,
the results for which are shown in the bottom right panel of
Figure A1. It can be seen that all the power spectra have
qualitatively the same shape and amplitude, except at large
scales, which suffer from the finite-volume effect. Therefore,
the WPS can also correctly characterize the matter distribution.
Nevertheless, the use of different analytic wavelets can lead

to subtle differences in the results, which can be explained by
the fact that the global WPS is the output of the Fourier power
spectrum being smoothed by the square of a wavelet kernel
(see, e.g., Wang et al. 2021). Obviously, the power-law
spectrum is immune to such a smoothing operation, but, in
general, the shape of the WPS will be smoother than the
corresponding Fourier power spectrum. In our case, the GDW
power spectrum is slightly lower than both the Fourier and
CW-GDW power spectra on the scales k 3 h Mpc−1, and
higher on k 20 h Mpc−1 for the highly nonlinear dark matter
density field. This is due to the poor localization of the GDW in
the frequency domain, as shown in Figure 1. Since the CW-
GDW is more concentrated in frequency than the GDW, we see
that the WPS based on the CW-GDW is closer to the Fourier
power spectrum than that based on the GDW, especially on
small scales. Finally, we compare the global WPSs, based on
the anisotropic CW-GDW and the isotropic CW-GDW. As
expected, they are almost identical.

12

The Astrophysical Journal, 934:112 (14pp), 2022 August 1 Wang & He

https://numpy.org/
https://github.com/pyFFTW/pyFFTW
https://github.com/pyFFTW/pyFFTW
https://scipy.org/
https://powerbox.readthedocs.io/en/latest/
https://matplotlib.org/
https://docs.enthought.com/mayavi/mayavi/
https://docs.enthought.com/mayavi/mayavi/
https://jupyter.org/


ORCID iDs

Yun Wang https://orcid.org/0000-0003-4064-417X
Ping He https://orcid.org/0000-0001-7767-6154

References

Addison, P. S. 2017, The Illustrated Wavelet Transform Handbook:
Introductory Theory and Applications in Science, Engineering, Medicine
and Finance (2nd edn; Boca Raton, FL: CRC Press),

Allys, E., Marchand, T., Cardoso, J.-F., et al. 2020, PhRvD, 102, 103506
Arizumi, N., & Aksenova, T. 2019, in IEEE International Symposium on

Signal Processing and Information Technology (Los Alamitos, CA: IEEE
Computer Society), 1

Arnalte-Mur, P., Labatie, A., Clerc, N., et al. 2012, A&A, 542, A34
Bacon, D. J., Battye, R. A., Bull, P., et al. 2020, PASA, 37, e007
Bandura, K., Addison, G. E., Amiri, M., et al. 2014, Proc. SPIE, 9145, 914522
Banerjee, A., & Abel, T. 2020, MNRAS, 500, 5479
Bennett, C. L., Larson, D., Weiland, J. L., et al. 2013, ApJS, 208, 20
Berkner, K., & Wells, R. 1997, in Conf. Record of the 31st Asilomar Conf. on

Signals, Systems and Computers, 2 (Los Alamitos, CA: IEEE Computer
Society), 1235

Bonoli, S., & Pen, U. L. 2009, MNRAS, 396, 1610
Bregman, J. N. 2007, ARA&A, 45, 221
Cheng, S., Ting, Y.-S., Ménard, B., & Bruna, J. 2020, MNRAS, 499, 5902
Chiang, C.-T., Wagner, C., Schmidt, F., & Komatsu, E. 2014, JCAP, 2014, 048
Chisari, N. E., Richardson, M. L. A., Devriendt, J., et al. 2018, MNRAS,

480, 3962
Cooper, M. C., Newman, J. A., Weiner, B. J., et al. 2008, MNRAS, 383, 1058

Copi, C. J., Gurian, J., Kosowsky, A., Starkman, G. D., & Zhang, H. 2019,
MNRAS, 490, 5174

Cui, W., Knebe, A., Yepes, G., et al. 2018, MNRAS, 473, 68
Cui, W., & Zhang, Y. 2017, in Trends in Modern Cosmology, ed.

A. J . C. de Souza (Rijeka: IntechOpen),
da Cunha, D. C. N., Harnois-Deraps, J., Brandenberger, R., Amara, A., &

Refregier, A. 2018, PhRvD, 98, 083015
Davé, R., Anglés-Alcázar, D., Narayanan, D., et al. 2019, MNRAS, 486, 2827
Fang, L.-Z., & Feng, L.-L. 2000, ApJ, 539, 5
Farahi, A., Nagai, D., & Anbajagane, D. 2022, ApJ, 933, 48
Foreman, S., Coulton, W., Villaescusa-Navarro, F., & Barreira, A. 2020,

MNRAS, 498, 2887
Frick, P., Beck, R., Berkhuijsen, E., & Patrickeyev, I. 2001, MNRAS,

327, 1145
Genel, S., Vogelsberger, M., Springel, V., et al. 2014, MNRAS, 445, 175
Hopkins, P. F. 2015, MNRAS, 450, 53
Hoyle, F., Vogeley, M. S., & Pan, D. 2012, MNRAS, 426, 3041
Hwang, H. S., Shin, J., & Song, H. 2019, MNRAS, 489, 339
Kaiser, G., & Hudgins, L. H. 1994, A friendly guide to wavelets, 300 (Boston

MA: Birkhäuser),
Liu, J.-R., & Fang, L.-Z. 2008, ApJ, 672, 11
Mallat, S. 2012, Commun. Pure Appl. Math., 65, 1331
Marinacci, F., Vogelsberger, M., Pakmor, R., et al. 2018, MNRAS, 480, 5113
Martínez, V. J., Paredes, S., & Saar, E. 1993, MNRAS, 260, 365
Maulbetsch, C., Avila-Reese, V., Colin, P., et al. 2007, ApJ, 654, 53
Meyers, S. D., Kelly, B. G., & O’Brien, J. J. 1993, MWR, 121, 2858
Miraghaei, H. 2020, ApJ, 160, 227
Mo, H., van den Bosch, F., & White, S. 2010, Galaxy Formation and Evolution

(Cambridge: Cambridge Univ. Press)
Moorman, C. M., Moreno, J., White, A., et al. 2016, ApJ, 831, 118

Figure A1. Comparison of Fourier power spectra with global WPS. Top left: a 2D Gaussian random field with the power-law power spectrum P(k) ∝ k−2. Bottom left:
the measured power spectra of the random field. Top right: a 2D projected dark matter density field at redshift z = 0 from TNG100-1, in a slice of width 75 h−1 Mpc
and a thickness of 16 h−1 Mpc. Bottom right: the measured power spectra of the dark matter density field. In the two bottom panels, all WPS are normalized to fit the
Fourier power spectrum.

13

The Astrophysical Journal, 934:112 (14pp), 2022 August 1 Wang & He

https://orcid.org/0000-0003-4064-417X
https://orcid.org/0000-0003-4064-417X
https://orcid.org/0000-0003-4064-417X
https://orcid.org/0000-0003-4064-417X
https://orcid.org/0000-0003-4064-417X
https://orcid.org/0000-0003-4064-417X
https://orcid.org/0000-0003-4064-417X
https://orcid.org/0000-0003-4064-417X
https://orcid.org/0000-0001-7767-6154
https://orcid.org/0000-0001-7767-6154
https://orcid.org/0000-0001-7767-6154
https://orcid.org/0000-0001-7767-6154
https://orcid.org/0000-0001-7767-6154
https://orcid.org/0000-0001-7767-6154
https://orcid.org/0000-0001-7767-6154
https://orcid.org/0000-0001-7767-6154
https://doi.org/10.1103/PhysRevD.102.103506
https://ui.adsabs.harvard.edu/abs/2020PhRvD.102j3506A/abstract
https://doi.org/10.1051/0004-6361/201118017
https://ui.adsabs.harvard.edu/abs/2012A&A...542A..34A/abstract
https://doi.org/10.1017/pasa.2019.51
https://ui.adsabs.harvard.edu/abs/2020PASA...37....7S/abstract
https://doi.org/10.1117/12.2054950
https://ui.adsabs.harvard.edu/abs/2014SPIE.9145E..22B/abstract
https://doi.org/10.1093/mnras/staa3604
https://ui.adsabs.harvard.edu/abs/2021MNRAS.500.5479B/abstract
https://doi.org/10.1088/0067-0049/208/2/20
https://ui.adsabs.harvard.edu/abs/2013ApJS..208...20B/abstract
https://doi.org/10.1111/j.1365-2966.2009.14829.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.396.1610B/abstract
https://doi.org/10.1146/annurev.astro.45.051806.110619
https://ui.adsabs.harvard.edu/abs/2007ARA&A..45..221B/abstract
https://doi.org/10.1093/mnras/staa3165
https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.5902C/abstract
https://doi.org/10.1088/1475-7516/2014/05/048
https://ui.adsabs.harvard.edu/abs/2014JCAP...05..048C/abstract
https://doi.org/10.1093/mnras/sty2093
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480.3962C/abstract
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480.3962C/abstract
https://doi.org/10.1111/j.1365-2966.2007.12613.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.383.1058C/abstract
https://doi.org/10.1093/mnras/stz2962
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.5174C/abstract
https://doi.org/10.1093/mnras/stx2323
https://ui.adsabs.harvard.edu/abs/2018MNRAS.473...68C/abstract
https://doi.org/10.1103/PhysRevD.98.083015
https://ui.adsabs.harvard.edu/abs/2018PhRvD..98h3015D/abstract
https://doi.org/10.1093/mnras/stz937
https://ui.adsabs.harvard.edu/abs/2019MNRAS.486.2827D/abstract
https://doi.org/10.1086/309207
https://ui.adsabs.harvard.edu/abs/2000ApJ...539....5F/abstract
https://doi.org/10.3847/1538-4357/ac721e
https://ui.adsabs.harvard.edu/abs/2022ApJ...933...48F/abstract
https://doi.org/10.1093/mnras/staa2523
https://ui.adsabs.harvard.edu/abs/2020MNRAS.498.2887F/abstract
https://doi.org/10.1046/j.1365-8711.2001.04812.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.327.1145F/abstract
https://ui.adsabs.harvard.edu/abs/2001MNRAS.327.1145F/abstract
https://doi.org/10.1093/mnras/stu1654
https://ui.adsabs.harvard.edu/abs/2014MNRAS.445..175G/abstract
https://doi.org/10.1093/mnras/stv195
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450...53H/abstract
https://doi.org/10.1111/j.1365-2966.2012.21943.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.426.3041H/abstract
https://doi.org/10.1093/mnras/stz2136
https://ui.adsabs.harvard.edu/abs/2019MNRAS.489..339H/abstract
https://doi.org/10.1086/523684
https://ui.adsabs.harvard.edu/abs/2008ApJ...672...11L/abstract
https://doi.org/10.1002/cpa.21413
https://doi.org/10.1093/mnras/sty2206
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480.5113M/abstract
https://doi.org/10.1093/mnras/260.2.365
https://ui.adsabs.harvard.edu/abs/1993MNRAS.260..365M/abstract
https://doi.org/10.1086/509706
https://ui.adsabs.harvard.edu/abs/2007ApJ...654...53M/abstract
https://doi.org/10.1175/1520-0493(1993)121<2858:AITWAI>2.0.CO;2
https://ui.adsabs.harvard.edu/abs/1993MWRv..121.2858M/abstract
https://doi.org/10.3847/1538-3881/abafb1
https://ui.adsabs.harvard.edu/abs/2020AJ....160..227M/abstract
https://doi.org/10.3847/0004-637X/831/2/118
https://ui.adsabs.harvard.edu/abs/2016ApJ...831..118M/abstract


Muñoz, A., Ertlé, R., & Unser, M. 2002, Signal Process., 82, 749
Naiman, J. P., Pillepich, A., Springel, V., et al. 2018, MNRAS, 477, 1206
Nelson, D., Pillepich, A., Genel, S., et al. 2015, Astron. Comput, 13, 12
Nelson, D., Pillepich, A., Springel, V., et al. 2018, MNRAS, 475, 624
Nelson, D., Springel, V., Pillepich, A., et al. 2019, CompAC, 6, 1
Newburgh, L., Bandura, K., Bucher, M., et al. 2016, Proc. SPIE, 9906, 99065X
Neyrinck, M. C., Szapudi, I., McCullagh, N., et al. 2018, MNRAS, 478, 2495
Omachi, M., & Omachi, S. 2007, in Int. Conf. on Wavelet Analysis and Pattern

Recognition (Los Alamitos, CA: IEEE Computer Society), 1688
Pando, J., & Fang, L.-Z. 1996, ApJ, 459, 1
Patil, S., & Abel, E. W. 2009, J. Med. Eng. Technol., 33, 223
Pillepich, A., Nelson, D., Hernquist, L., et al. 2018a, MNRAS, 475, 648
Pillepich, A., Springel, V., Nelson, D., et al. 2018b, MNRAS, 473, 4077
Planck Collaboration XIII 2016, A&A, 594, A13
Rioul, O. 1991, in Int. Conf. on Acoustics, Speech, and Signal Processing

(Piscataway, NJ: IEEE), 2213
Sefusatti, E., Crocce, M., Pueblas, S., & Scoccimarro, R. 2006, PhRvD, 74,

023522
Shi, X., Nagai, D., & Lau, E. T. 2018, MNRAS, 481, 1075
Springel, V. 2010, MNRAS, 401, 791
Springel, V., Pakmor, R., Pillepich, A., et al. 2018, MNRAS, 475, 676

Starck, J.-L., Aghanim, N., & Forni, O. 2004, A&A, 416, 9
Torrence, C., & Compo, G. P. 1998, BAMS, 79, 61
Torrey, P., Vogelsberger, M., Genel, S., et al. 2014, MNRAS, 438, 1985
Unser, M., Aldroubi, A., & Schiff, S. 1994, IEEE Trans. Signal Process,

42, 3519
Valogiannis, G., & Dvorkin, C. 2022, PhRvD, 105, 103534
van Daalen, M. P., McCarthy, I. G., & Schaye, J. 2019, MNRAS, 491, 2424
van Daalen, M. P., Schaye, J., Booth, C. M., & Dalla Vecchia, C. 2011,

MNRAS, 415, 3649
Vogelsberger, M., Genel, S., Sijacki, D., et al. 2013, MNRAS, 436, 3031
Vogelsberger, M., Genel, S., Springel, V., et al. 2014, Natur, 509, 177
Vrhel, M., Lee, C., & Unser, M. 1997, IEEE Trans. Signal Process, 45, 891
Wang, Y., & He, P. 2021, CoTPh, 73, 095402
Wang, Y., Pearce, F., Knebe, A., et al. 2018, ApJ, 868, 130
Wang, Y., Yang, H.-Y., & He, P. 2021, arXiv:2112.06114
Weinberger, R., Springel, V., Pakmor, R., et al. 2018, MNRAS, 479, 4056
Yang, H.-Y., He, P., Zhu, W., & Feng, L.-L. 2020, MNRAS, 498, 4411
Yang, H.-Y., Wang, Y., He, P., Zhu, W., & Feng, L.-L. 2021, MNRAS,

509, 1036
Zhang, T. J., Yu, H. R., Harnois-Déraps, J., MacDonald, I., & Pen, U. L. 2011,

ApJ, 728, 35

14

The Astrophysical Journal, 934:112 (14pp), 2022 August 1 Wang & He

https://doi.org/10.1016/S0165-1684(02)00140-8
https://doi.org/10.1093/mnras/sty618
https://ui.adsabs.harvard.edu/abs/2018MNRAS.477.1206N/abstract
https://doi.org/10.1016/j.ascom.2015.09.003
https://ui.adsabs.harvard.edu/abs/2015A&C....13...12N/abstract
https://doi.org/10.1093/mnras/stx3040
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475..624N/abstract
https://doi.org/10.1186/s40668-019-0028-x
https://ui.adsabs.harvard.edu/abs/2019ComAC...6....2N/abstract
https://doi.org/10.1117/12.2234286
https://ui.adsabs.harvard.edu/abs/2016SPIE.9906E..5XN/abstract
https://doi.org/10.1093/mnras/sty1074
https://ui.adsabs.harvard.edu/abs/2018MNRAS.478.2495N/abstract
https://doi.org/10.1086/176864
https://ui.adsabs.harvard.edu/abs/1996ApJ...459....1P/abstract
https://doi.org/10.1080/03091900802697867
https://doi.org/10.1093/mnras/stx3112
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475..648P/abstract
https://doi.org/10.1093/mnras/stx2656
https://ui.adsabs.harvard.edu/abs/2018MNRAS.473.4077P/abstract
https://doi.org/10.1051/0004-6361/201525830
https://ui.adsabs.harvard.edu/abs/2016A&A...594A..13P/abstract
https://doi.org/10.1103/PhysRevD.74.023522
https://ui.adsabs.harvard.edu/abs/2006PhRvD..74b3522S/abstract
https://ui.adsabs.harvard.edu/abs/2006PhRvD..74b3522S/abstract
https://doi.org/10.1093/mnras/sty2340
https://ui.adsabs.harvard.edu/abs/2018MNRAS.481.1075S/abstract
https://doi.org/10.1111/j.1365-2966.2009.15715.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.401..791S/abstract
https://doi.org/10.1093/mnras/stx3304
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475..676S/abstract
https://doi.org/10.1051/0004-6361:20040067
https://ui.adsabs.harvard.edu/abs/2004A&A...416....9S/abstract
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
https://ui.adsabs.harvard.edu/abs/1998BAMS...79...61T/abstract
https://doi.org/10.1093/mnras/stt2295
https://ui.adsabs.harvard.edu/abs/2014MNRAS.438.1985T/abstract
https://doi.org/10.1109/78.340787
https://ui.adsabs.harvard.edu/abs/1994ITSP...42.3519U/abstract
https://ui.adsabs.harvard.edu/abs/1994ITSP...42.3519U/abstract
https://doi.org/10.1103/PhysRevD.105.103534
https://ui.adsabs.harvard.edu/abs/2022PhRvD.105j3534V/abstract
https://doi.org/10.1093/mnras/stz3199
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.2424V/abstract
https://doi.org/10.1111/j.1365-2966.2011.18981.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.415.3649V/abstract
https://doi.org/10.1093/mnras/stt1789
https://ui.adsabs.harvard.edu/abs/2013MNRAS.436.3031V/abstract
https://doi.org/10.1038/nature13316
https://ui.adsabs.harvard.edu/abs/2014Natur.509..177V/abstract
https://doi.org/10.1109/78.564177
https://ui.adsabs.harvard.edu/abs/1997ITSP...45..891V/abstract
https://doi.org/10.1088/1572-9494/ac10be
https://ui.adsabs.harvard.edu/abs/2021CoTPh..73i5402W/abstract
https://doi.org/10.3847/1538-4357/aae52e
https://ui.adsabs.harvard.edu/abs/2018ApJ...868..130W/abstract
https://arxiv.org/abs/2112.06114
https://doi.org/10.1093/mnras/sty1733
https://ui.adsabs.harvard.edu/abs/2018MNRAS.479.4056W/abstract
https://doi.org/10.1093/mnras/staa2666
https://ui.adsabs.harvard.edu/abs/2020MNRAS.498.4411Y/abstract
https://doi.org/10.1093/mnras/stab3062
https://ui.adsabs.harvard.edu/abs/2022MNRAS.509.1036Y/abstract
https://ui.adsabs.harvard.edu/abs/2022MNRAS.509.1036Y/abstract
https://doi.org/10.1088/0004-637X/728/1/35
https://ui.adsabs.harvard.edu/abs/2011ApJ...728...35Z/abstract

	1. Introduction
	2. Data Sets
	3. Continuous Wavelet Methods
	3.1. The 1D Cosine-weighted Gaussian-derived Wavelet
	3.2. The 3D Isotropic CW-GDW Transform
	3.3. The 3D Anisotropic CW-GDW Transform
	3.4. Wavelet Statistics

	4. Results
	4.1. The Env-WPS of the Density Field
	4.2. The Env-bias of the Gas Relative to the Dark Matter
	4.3. The Env-WCC between the Dark Matter and the Gas

	5. Discussion and Conclusions
	AppendixComparison between the Global WPS and the Conventional Fourier Power Spectrum in 2D
	References



